Skip to main content

The Measurement of Brain Ascorbate In Vivo and Its Link with Excitatory Amino Acid Neurotransmission

  • Protocol

Part of the book series: Neuromethods ((NM,volume 27))

Abstract

L-Ascorbic acid (AA, vitamin C) is found throughout the plant and animal kingdoms (Davies et al., 1991). A major function of AA is as an antioxidant, protecting tissues from harmful free radicals and maintaining certain enzymes in their reduced form (Padh, 1990). Although mechanisms of its roles are often unknown or only poorly understood, details of specific interactions of AA with a variety of molecular complexes, such as calcium channels (Parsey and Matteson, 1993) and neurotransmitter receptors (Majewska et al., 1990), have recently been revealed.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  • Adams R. N. (1990) In vivo electrochemical measurements in the CNS. Prog. Neurobiol. 35, 297–311.

    PubMed  CAS  Google Scholar 

  • Agrawal A., Rao I., and Sharma P. D. (1993) Trace metal-ion catalysis—kinetics and mechanism of oxidation of L-ascorbic acid by chromium(VI) in phosphate buffers. Transit. Metal Chem. 18, 191–196.

    CAS  Google Scholar 

  • Albahadily F. N. and Mottola H. A. (1987) Improved response of carbon-paste electrodes for electrochemical detection in flow systems by pretreatment with surfactants. Anal. Chem. 59, 958–962.

    CAS  Google Scholar 

  • Albery W. J., Goddard N. J., Beck T. W., Fillenz M., and O’Neill R. D. (1984) Theoretical and experimental studies of linear sweep voltammetry in the rat brain. J. Electroanal. Chem. 161, 221–233.

    CAS  Google Scholar 

  • Amatore C., Kelly S., Kristensen E. W., Kuhr W. G., and Wightman R. M. (1986) Effects of restricted diffusion at ultramicroelectrodes in brain tissue. The pool model: theory and experiment for chronoamperometry. J, Electroanal. Chem. 213, 31–42.

    CAS  Google Scholar 

  • Arad I., Sidi A., and Shohami E. (1985) Effect of acute hypoxia on ascorbate content of plasma, cerebral cortex and adrenal gland. J. Neurochem. 45, 766–769.

    PubMed  CAS  Google Scholar 

  • Armstrong-James M. and Millar J. (1979) Carbon fibre micro-electrodes. J. Neurosci. Methods 1, 279–287.

    PubMed  CAS  Google Scholar 

  • Bailarin M., Herrera-Marschitz M., Casas M., and Ungerstedt U. (1987) Striatal adenosine levels measured “in vivo” by microdialysis in rats with unilateral dopamine denervation. Neurosci. Lett. 83, 338–344.

    Google Scholar 

  • Bansch B., Martinez P., Uribe D., Zuluaga J., and Vaneldik R. (1991) Is the oxidation of L-ascorbic acid by aquated iron(III) ions in acidic aqueous solution substitution-transfer-controlled or electron-transfer controlled—a combined chloride, pH temperature, and pressure dependence study. Inorg. Chem. 30, 4555–4559.

    Google Scholar 

  • Basse-Tomusk A. and Rebec G. V. (1990) Corticostriatal and thalamic regulation of amphetamine-induced ascorbate release in the neostriatum. Pharmacol. Biochem. Behav. 35, 55–60.

    PubMed  CAS  Google Scholar 

  • Basse-Tomusk A. and Rebec G. V. (1991) Regional distribution of ascorbate and 3,4-dihydroxyphenylacetic acid (DOPAC) in rat striatum. Brain Res. 538, 29–35.

    PubMed  CAS  Google Scholar 

  • Bigelow J. C, Brown D. S., and Wightman R. M. (1984) Gamma-amino-butyric acid stimulates the release of endogenous ascorbic acid from rat striatal tissue. J. Neurochem. 2, 412–419.

    Google Scholar 

  • Blaha C. D. and Jung M. E. (1991) Electrochemical evaluation of stearate-modified graphite paste electrode: selective detection of dopamine is maintained after exposure to brain tissue. J. Electroanal. Chem. 310, 317–334.

    CAS  Google Scholar 

  • Blaha D. and Lane R. F. (1983) Chemically modified electrode for in vivo monitoring of brain catecholamines. Brain Res. Bull. 10, 861–864.

    PubMed  CAS  Google Scholar 

  • Boutelle M. G., Svensson L., and Fillenz M. (1989) Rapid changes in striatal ascorbate in response to tail-pinch monitored by constant potential voltammetry. Neuroscience 30, 11–17.

    PubMed  CAS  Google Scholar 

  • Boutelle M. G., Svensson L., and Fillenz M. (1990a) Effect of diazepam on behaviour and associated changes in ascorbate concentration in rat brain areas: striatum, in. accumbens and hippocampus. Psychopharmacology 100, 230–236.

    PubMed  CAS  Google Scholar 

  • Boutelle M. G., Zetterstrom T., Pei Q., Svensson L., and Fillenz M. (1990b) In vivo neurochemical effects of tail pinch. J. Neurosci. Methods 34, 151–157.

    PubMed  CAS  Google Scholar 

  • Brazell P. and Marsden C. (1982) Intracerebral injection of ascorbate oxidase-effect on in vivo electrochemical recordings. Brain Res. 249, 167–172.

    PubMed  CAS  Google Scholar 

  • Britt S. G., Chiu V. W. S., Redpath G. T., and VandenBerg S. R. (1992) Elimination of ascorbic acid-induced membrane lipid peroxidation and serotonin receptor loss by Trolox-C, a water soluble analogue of vitamin E. J. Recept. Res. 12, 181–200.

    PubMed  CAS  Google Scholar 

  • Broderick P. A. (1988) Distinguishing in vitro electrochemical signatures for norepinephrine and dopamine. Neurosci. Lett. 95, 275–280.

    PubMed  CAS  Google Scholar 

  • Broderick P. A., Kornak E. P. Jr., Eng F., and Wechsler R. (1993) Real time detection of acute (IP) cocaine-enhanced dopamine and serotonin release in ventrolateral nucleus accumbens of the behaving Norway rat. Pharmacol. Biochem. Behav. 46, 715–722.

    PubMed  CAS  Google Scholar 

  • Brose N., O’Neill R. D., Boutelle M. G., and Fillenz M. (1989) The effects of anxiolytic and anxiogenic benzodiazepine receptor ligands on motor activity and levels of ascorbic acid in the nucleus accumbens and striatum of the rat. Neuropharmacology 28, 509–514.

    PubMed  CAS  Google Scholar 

  • Brose N., O’Neill R. D., Boutelle M. G., and Fillenz M. (1988) Dopamine in the basal ganglia and benzodiazepine-mduced sedation. Neuropharmacology 27, 589–595.

    PubMed  CAS  Google Scholar 

  • Brose N., O’Neill R. D., Boutelle M. G., Anderson S. M. P., and Fillenz M. (1987) Effects of an anxiogenic benzodiazepine receptor ligand on rat motor activity and dopamine release in nucleus accumbens and striatum. J. Neurosci. 7, 2917–2926.

    PubMed  CAS  Google Scholar 

  • Brun P., Suaud-Chagny M. F., Lachuer J., Gonon F., and Buda M. (1991) Catecholamine metabolism in locus coeruleus neurons: a study of its activation by sciatic nerve stimulation in the rat. Eur. J. Neurosci. 3, 397–406.

    PubMed  Google Scholar 

  • Bull D. R., Bakhtiar R., and Sheehan M. J. (1991) Characterization of dopamine autoreceptors in the amygdala: a fast cyclic voltammetric study in vitro. Neurosci. Lett. 134, 41–44.

    PubMed  CAS  Google Scholar 

  • Cammack J., Ghasemzadeh B. and Adams R. N. (1991) The pharmacological profile of glutamate-evoked ascorbic acid efflux measured byinvivo electrochemistry. Brain Res. 565, 17–22.

    PubMed  CAS  Google Scholar 

  • Carlsson M. and Carlsson A. (1990) Interactions between glutamatergic and monoaminergic systems with the basal ganglia—implications for schizophrenia and Parkinson’s disease. Trends Neurosci. 13, 272–276.

    PubMed  CAS  Google Scholar 

  • Cespugho R, Sarda N., Gharib A., Faradji H., and Chastrette N. (1986) Differential pulse voltammetry in vivo with working carbon fibre electrodes: 5-hydroxyindole compounds or uric acid detection. Exp. Brain Res. 64, 589–595.

    Google Scholar 

  • Cheng H. Y., Schenk J., Huff R., and Adams R. N. (1979) In vivo electrochemistry: behaviour of micro electrodes in brain tissue. J. Electroanal. Chem. 100, 23–31.

    CAS  Google Scholar 

  • Chow R. H., Vonruden L., and Neher E. (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356, 60–63.

    PubMed  CAS  Google Scholar 

  • Church W. H. and Justice J. B. Jr. (1987) Rapid sampling and determination of extracellular dopamine in vivo. Anal. Chem. 59, 712–716.

    PubMed  CAS  Google Scholar 

  • Clemens J. A. and Phebus L. A. (1983) Changes in brain chemistry produced by dopaminergic agents: in vivo electrochemical monitoring reveals opposite changes in anaesthetized vs unanaesthetized rats. Brain Res. 267, 183–186.

    PubMed  CAS  Google Scholar 

  • Collins G. G. S., Anson J., and Surtees L. (1983) Presynaptic kainate and N-methyl-D-aspartate receptors regulate excitatory amino-acid release in the olfactory cortex. Brain Res. 265, 157–159.

    PubMed  CAS  Google Scholar 

  • Coury L. A. Jr. and Heineman W. R. (1988) Electrochemical examination of unusual properties of spectroscopic graphite electrodes. J. Electroanal. Chem. 256, 327–341.

    CAS  Google Scholar 

  • Crespi F., Keane P. E., and Morre M. (1986) Anaesthesia abolishes the effect of valproate on extracellular 5HIAA, DOPAC and ascorbate as measured in rat striatum by differential pulse voltammetry. Br. J. Pharmacol. 87, 279–283.

    PubMed  CAS  Google Scholar 

  • Crespi F., Sharp T., Maidment N., and Marsden C.A. (1983) Differential pulse voltammetry in vivo—evidence that uric acid contributes to the mdole oxidation peak. Neurosci. Lett. 43, 203–207.

    PubMed  CAS  Google Scholar 

  • Davies M. B. (1992) Reactions of L-ascorbic acid with transition metal complexes. Polyhedron 11, 285–321.

    CAS  Google Scholar 

  • Davies M. B., Austin J., and Partridge D. A. (1991) Vitamin C. Us Chemistry and Biochemistry. The Royal Society of Chemistry (Pubs.), Cambridge, England.

    Google Scholar 

  • Dayton M. A., Ewing A. G., and Wightman R. M. (1980) Response of microvoltammetric electrodes to homogeneous catalytic and slow heterogeneous charge-transfer reactions. Anal. Chem. 52, 2392–2396.

    CAS  Google Scholar 

  • Dayton M. A., Ewing A. G., and Wightman R. M. (1981) Evaluation of amphetamine-induced in vivo electrochemical response. Eur. J. Pharmacol. 75, 141–144.

    PubMed  CAS  Google Scholar 

  • Desimoni E., Casella G. I., Cataldi T. R. I., Salvi M., Rotunno T., and Dicroce E. (1992) Remarks on the surface characterization of carbon fibres. Surf. Interface Anal. 18, 623–630.

    CAS  Google Scholar 

  • Deutsch J. and Kolhouse J. F. (1993) Ascorbate and dehydroascorbate measurementsinaqueous solutions and plasma determined by gas chromatography/mass spectrometry. Anal. Chem. 65, 321–326.

    PubMed  CAS  Google Scholar 

  • Duff A. and O’Neill R. D. (1994) Effect of probe size on the concentration of brain extracellular uric acid monitored with carbon paste electrodes. J. Neurochem. 62, 1496–1502.

    PubMed  CAS  Google Scholar 

  • El-Beheiry H. and Puil E. (1989) Anaesthetic depression of excitatory synaptic transmission in neocortex. Exp. Brain Res. 77, 87–93.

    PubMed  CAS  Google Scholar 

  • Falat L. and Cheng H. Y. (1982) Voltammetric differentiation of ascorbic acid and dopamine at an electrochemically treated graphite-epoxy electrode. Anal. Chem. 54, 2108–2111.

    CAS  Google Scholar 

  • Ferkany J. W., Zaczek R., and Coyle J. T. (1982) Kainic acid stimulates excitatory amino acid neurotransmitter release at presynaptic receptors. Nature 28, 757–759.

    Google Scholar 

  • Fillenz M. and O’Neill R. D. (1986) Effects of light reversal on the arcadian pattern of motor activity and voltammetric signals recorded in rat forebrain. J. Physiol. (Lond.) 374, 91–101.

    CAS  Google Scholar 

  • Fillenz M., O’Neill R. D., and Grunewald R. A. (1986) Changes in extracellular brain ascorbate concentration as an index of excitatory amino acid release, in Measuring Peripheral and Central Neurotransmitter Release During Behaviour (Joseph M. F., Fillenz M., MacDonald I. A., and Marsden C. A., eds.), Ellis Horwood, Chichester, pp. 144–163.

    Google Scholar 

  • Fonseca E. and Ribeiro J. A. (1991) Ascorbate-induced lipid peroxidation and inhibition of [3H] adenosine binding to rat brain synaptosomes. Nucleosides Nucleotides 10, 1213–1214.

    Google Scholar 

  • Form C. and Nieoullon A. (1984) Electrochemical detection of dopamine release in the striatum of freely moving hamsters. Brain Res. 297, 11–20.

    Google Scholar 

  • Garcia-Munoz M., Young S. J., and Groves P. M. (1991) Terminal excitability of the corticostriatal pathway. II. Regulation by glutamate receptor stimulation. Brain Res. 551, 207–215.

    PubMed  CAS  Google Scholar 

  • Gardiner T. W., Armstrong-James M., Caan A. W., Wightman R. M., and Rebec G. V. (1985) Modulation of neostriatal activity by iontophoresis of ascorbic acid. Brain Res. 344, 181–185.

    PubMed  CAS  Google Scholar 

  • Gelbert M. B. and Curran D. J. (1986) Alternating current voltammetry of dopamine and ascorbate at the carbon paste electrodes and stearate modified carbon paste electrodes. Anal. Chem. 5, 1028–1032.

    Google Scholar 

  • Ghasemzedah B., Cammack J., and Adams R. N. (1991) Dynamic changes in extracellular fluid ascorbic acid monitored by in vivo electrochemistry. Brain Res. 547, 162–166.

    PubMed  CAS  Google Scholar 

  • Ghosh C., Dick R. L., and Ali S. F. (1993) Iron/ascorbate-induced lipid peroxidation changes membrane fluidity and muscarinic cholinergic receptor binding in rat frontal cortex. Nature 23, 479–484.

    CAS  Google Scholar 

  • Glynn G. E. and Yamamoto K. (1989) In vivo neurochemical and anatomical heterogeneity of the dopamine uptake system in the rat caudate putamen. Brain Res. 481, 235–241.

    PubMed  CAS  Google Scholar 

  • Gonon F., Buda M., Cespuglio R., Jouvet M., and Pujol J. F. (1980) In vivo electrical detection of catechols in the rat neostriatum: dopamine or DOPAC? Nature 286, 902–904.

    PubMed  CAS  Google Scholar 

  • Gonon F., Buda M., Cespuglio R., Jouvet M., and Pujol J. F. (1981a) Voltammetry in the striatum of chronic freely moving rats: detection of catechols and ascorbic acid. Brain Res. 223, 69–80.

    PubMed  CAS  Google Scholar 

  • Gonon F., Fombarlet M., Buda M., and Pujol J. F. (1981b) Electrochemical treatments of pyrolytic carbon fibre electrodes. Anal. Chem. 53, 1386–1389.

    CAS  Google Scholar 

  • Gonzalez-Mora J. L., Sanchez-Bruno J. A., and Mas M. (1988) Concurrent on-line analysis of striatal ascorbate, dopamine and dihydroxyphenylacetic acid concentrations by in vivo voltammetry. Neurosci. Lett. 86, 61–66.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Mora J. L., Maidment N. T., Guadalupe T., and Mas M. (1989) Post-mortem dopamine dynamics assessed by voltammetry and microdialysis. Brain Res. Bull. 23, 323–327.

    PubMed  CAS  Google Scholar 

  • Gonzalez-Mora J. L., Guadalupe T., Fumero B., and Mas M. (1991) Mathematical resolution of mixed in vivo voltammetry signals. Models, equipment, assessment by simultaneous microdialysis sampling. J. Neurosci. Methods 39, 231–244.

    PubMed  CAS  Google Scholar 

  • Grunewald R. A. (1993) Ascorbic acid in the brain. Brain Res. Rev. 18, 123–133.

    PubMed  CAS  Google Scholar 

  • Grunewald R. A. and Fillenz M. (1984) Release of ascorbate from synaptosomal fraction of rat brain. Neurochem. Int. 6, 491–500.

    PubMed  CAS  Google Scholar 

  • Grunewald R. A., O’Neill R. D., Fillenz M., and Albery W. J. (1983) The origin of circadian and amphetamine-induced changes in the extracellular concentration of brain ascorbate. Neurochem. Int. 5, 773–778.

    PubMed  CAS  Google Scholar 

  • Hahn Z., Cespuglio R., Faradji H., and Jouvet M. (1985) Factors influencing the properties of voltammetric carbon fibre electrodes: the importance of the pH of the medium used for the electrical treatment and of the resin coating of the fibres. J. Biochem. Biophys. Methods 11, 265–275.

    PubMed  CAS  Google Scholar 

  • Hamilton M. E., Mele A., and Pert A. (1992) Striatal extracellular dopamine in conscious vs. anesthetized rats: effects of chloral hydrate anesthetic on responses to drugs of different classes. Brain Res. 597, 1–7.

    PubMed  CAS  Google Scholar 

  • Hand D. B. and Greisen E. C. (1942) Oxidation and reduction of vitamin J. Am. Chem. Soc. 64, 358–361.

    CAS  Google Scholar 

  • Haskett C. and Mueller K. (1987) The effects of serotonin depletion on the voltammetric response to amphetamine. Pharmacol. Biochem. Behav. 28, 381–384.

    PubMed  CAS  Google Scholar 

  • Heikkila R. E., Cabbat F. S., and Manzino L. (1982) Inhibitory effects of ascorbic acid on the binding of [3H]dopamine to neostriatal membrane preparations: relationship to lipid peroxidahon. J. Neurochem. 38, 1000–1006.

    PubMed  CAS  Google Scholar 

  • Hong M., Milne, B., Loomis C, and Jhamandas K. (1992) Stereoselective effects of central Alpha2-adrenergic agonist medetomidine on in vivo catechol activity in the rat rostral ventrolateral medulla (RVLM). Brain Res. 592, 163–169.

    PubMed  CAS  Google Scholar 

  • Houdouin F., Cespugho R., Gharib A., Sarda N., and Jouvet M. (1991) Detection of the release of 5-hydroxyindole compounds in the hypothalamus and the n. raphe dorsalis throughout the sleep-waking cycle and during stressful situations in the rat: a polygraphic and voltammetric approach. Exp. Brain Res. 85, 153–162.

    PubMed  CAS  Google Scholar 

  • Hu I. F. and Kuwana T. (1986) Oxidative mechanism of ascorbic acid at glassy carbon electrodes. Anal. Chem. 58, 3235–3239.

    CAS  Google Scholar 

  • Hulthe P., Johannessen K., Svensson L., and Engel J. (1989) A new pretreatment method for carbon fibre microelectrodes enhances the selectivity for dopamine. J. Neurosci. Methods 29, 297.

    Google Scholar 

  • Inoue K., Kiriike N., Okuno M., Ito H., Fujisaki Y., Matsui T., and Kawakita Y. (1993) Scheduled feeding caused activation of dopamine metabolism in the striatum of rats. Physiol. Behav. 53, 177–181.

    PubMed  CAS  Google Scholar 

  • Jacques P. F. (1992) Relationship of vitamin status to cholesterol and blood pressure. Ann. NY Acad. Sci. 669, 205–214.

    PubMed  CAS  Google Scholar 

  • Joseph M. H. and Young A. M. J. (1991) Pharmacological evidence, using in vivo dialysis, that substances additional to ascorbic acid, uric acid and homovanillic acid contribute to the voltammetric signals obtained in unrestrained rats from chronically implanted carbon paste electrodes. J. Neurosci. Methods 36, 209–218.

    PubMed  CAS  Google Scholar 

  • Joseph M. H. and Kennett G. A. (1981) In vivo voltammetry in the rat hippocampus as an index of drug effects on extraneuronal 5-HT. Neuropharmacology 20, 1361–1364.

    PubMed  CAS  Google Scholar 

  • Joseph M. H., Hodges H., and Gray J. A. (1989) Lever pressing for food reward and in vivo voltammetry: evidence for increasesinextracellular homovanillic acid, the dopamine metabolite, and uric acid in the rat caudate nucleus. Neuroscience 32, 195–201.

    PubMed  CAS  Google Scholar 

  • Justice J. B. Jr., Wages S. A., and Michael A. C. (1983) Interpretations of voltammetry in the striatum based on chromatography of striatal dialysate. J. Liq. Chromatog. 6, 1873–1896.

    CAS  Google Scholar 

  • Kamata K., Wilson R. L., Alloway K. D., and Rebec G. V. (1986) Multiple amphetamine injections reduce the release of ascorbic acid in the neostriatum of the rat. Brain Res. 362, 331–338.

    PubMed  CAS  Google Scholar 

  • Karabinas P., Sazou D., and Jannakoudakis D. (1985) Comparative electrochemical study of L-ascorbic acid and dihydroxyfumaric acid on a mercury electrode in neutral media. J. Electroanal. Chem. 192, 469–478.

    Google Scholar 

  • Kawagoe K. T., Zimmerman J. B., and Wightman R. M. (1993) Principles of voltammetry and microelectrode surface states. J. Neurosci. Met hods 48, 225–240.

    CAS  Google Scholar 

  • Kawagoe K. T., Garris P. A., Wiedemann D. J., and Wightman R. M. (1992) Regulation of transient dopamme concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum. Neuroscience 51, 55–64.

    PubMed  CAS  Google Scholar 

  • Kendall T. J. G., and Minchin M. W. (1982) The effects of anaesthetics on the uptake and release of amino acid neurotransmitters in thalamic slices. Br. J Pharmacol. 75, 219–227.

    PubMed  CAS  Google Scholar 

  • Kissinger P. T., Hart J. B., and Adams R. N. (1973) Voltammetry in brain tissue—a new neurophysiological measurement. Brain Res. 55, 209–213.

    PubMed  CAS  Google Scholar 

  • Kiyatkin E. A., Wise R. A., and Gratton A. (1993) Drug-and behavior-associated changes in dopamine-related electrochemical signals during intravenous heroin self-administration in rats. Synapse 14, 60–72.

    PubMed  CAS  Google Scholar 

  • Kovach P. M., Deakin M. R., and Wightman R. M. (1986) Electrochemistry at partially blocked carbon-fiber microcylinder electrodes. J. Phys. Chem. 90, 4612–4617.

    CAS  Google Scholar 

  • Kovachich G. B. and Mishra O. P. (1984) Stabilization of ascorbic acid and norepinephrine in vitro by the subcellular fractions of rat cerebral cortex. Neurosci. Lett 52, 153–158.

    PubMed  CAS  Google Scholar 

  • Kuo C. H., Yonehara N., Hata F., and Yoshida H. (1978) Subcellular distribution of ascorbic acid in the rat brain. Jpn. J. Pharmacol. 28, 789–791.

    PubMed  CAS  Google Scholar 

  • Lam D. K. C. and Daniel P. M. (1986) The influx of ascorbic acid into the rat brain. Quart. J. Exp. Physiol. 71, 483–490.

    CAS  Google Scholar 

  • Lane R. F., Hubbard A. T., and Blaha C. D. (1978) Brain dopaminergic neurons:invivo electrochemical information concerning storage, metabolism and release processes. Bioelectrochem. Bioenerg. 5, 504–525.

    CAS  Google Scholar 

  • Lane R. F., Hubbard A T., and Blaha D. (1979) Application of semiderivative electroanalysis to studies of neurotransmittersinthe central nervous system. J. Electroanal. Chem. 95, 117–122.

    CAS  Google Scholar 

  • Lechien A., Valenta P., Nurnberg H. W., and Patriarche G. J. (1982) Determination of ascorbic acid by differential pulse voltammetry. Fresenius Z. Anal. Chem, 311, 105–108.

    CAS  Google Scholar 

  • Lotwick H. S. and Haynes L. W. (1989) CGRP and ascorbate oppositely regulate cell-surface acetylcholine receptor number in quail myotubes. Neurosci. Res. Commun. 5, 171–179.

    CAS  Google Scholar 

  • Louilot A., Serrano A., and D’Angio M. (1987) A novel carbon fibre implantation assembly for cerebral voltammetric measurements in freely moving rats. Physiol. Behav. 41, 227–231.

    PubMed  CAS  Google Scholar 

  • Lovinger D. M., Tyler E., Fidler S., and Merritt A. (1993) Properties of a presynaptic metabotropic glutamate receptor in rat neostriatal slices. J. Neurophysiol. 69, 1236–1244.

    PubMed  CAS  Google Scholar 

  • Lowry J. P., McAteer K., El Atrash S. S., Duff A., and O’Neill R. D. (1994) Characterization of glucose oxidase modified poly(phenylenediamme)-coated electrodes for in vitro and in vivo: homogeneous interference by ascorbic acid in hydrogen peroxide detection. Anal. Chem. 66, 1754–1761.

    CAS  Google Scholar 

  • Lyne P. D and O’Neill R. D. (1989) Selectivity of stearate-modified carbon paste electrodes for dopamine and ascorbic acid. J. Anal. 61, 2323,2324.

    CAS  Google Scholar 

  • Lyne P. D. and O’Neill R. D. (1990) Stearate-modified carbon paste electrodes for detecting dopamine in vivo: decrease in selectivity caused by lipids and other surface-active agents. Anal. Chem. 62, 2347–2351.

    PubMed  CAS  Google Scholar 

  • Majewska M. D. and Bell J. A. (1990) Ascorbic acid protects neurons from injury induced by glutamate and NMDA. NeuroReport 1, 194–196.

    PubMed  CAS  Google Scholar 

  • Majewska M. D., Bell J. A., and London E. D. (1990) Regulation of the NMDA receptor by redox phenomena: mhibitory role of ascorbate. Brain Res. 537, 328–332.

    PubMed  CAS  Google Scholar 

  • Marcenac F. and Gonon F. (1985) Fast in vivo monitoring of dopamine release in the rat brain with differential pulse amperometry. Anal. Chem. 57, 1778,1779.

    PubMed  CAS  Google Scholar 

  • Marsden A., Joseph M. H., Kruk Z. L., Maidment N. T., O’Neill R. D., Schenk J. O., and Stamford J. A. (1988) In vivo voltammetry—Present electrodes and methods. Neuroscience 25, 389–400.

    PubMed  CAS  Google Scholar 

  • Mas M., Gonzalez-Mora J. L., Louilot A., Sole C., and Guadalupe T. (1990) Increased dopamine release in the nucleus accumbens of copulating male rats as evidenced by in vivo voltammetry. Neurosci. Lett. 110, 303–308.

    PubMed  CAS  Google Scholar 

  • Matsuda H. and Ayabe Y. (1955) Zur Theorie der Randles-Seveikschen Kathodenstrahl-Polarographie. Z. Elektrochem. 59, 494–503.

    CAS  Google Scholar 

  • May P. C, Morgan D G., Salo D., Goss J. R., and Finch C. E. (1988) Effects of radioligand oxidation and ascorbate-induced lipid peroxidation on serotonin-1 receptor assay: use of ascorbate and ethylenedia-minetetraacetic acid buffers to prevent [3H]-5-HT binding artifacts. J. Neurosci. Res. 20, 257–262.

    PubMed  CAS  Google Scholar 

  • Mermet C. and Gonon F. (1986) In vivo voltammetric monitoring of noradrenaline release and catecholamine metabolism in the hypothalamic paraventricular nucleus. Neurosctence 19, 829–838.

    CAS  Google Scholar 

  • Miele M., Boutelle M. G., and Fillenz M. (1994) The physiologically-induced release of ascorbate in rat brain is dependent on impulse traffic calcium influx and glutamate uptake. Neuroscience 62, 87–91.

    PubMed  CAS  Google Scholar 

  • Mihic S. J., Wu P. H., and Kalant H. (1992) Potentiation of gamma-aminobutyric acid-mediated chloride flux by pentobarbital and diazepam but not ethanol. J. Neurochem. 58, 745–751.

    PubMed  CAS  Google Scholar 

  • Milby K., Oke A. F., and Adams R. N. (1982) Detailed mapping of ascorbate distribution in the rat brain. Neurosa. Lett. 28, 15–20.

    CAS  Google Scholar 

  • Milby K. H., Mefford L. N., Chey W., and Adams R. N. (1981) In vitro and in vivo depolarization-coupled efflux of ascorbic aid in rat brain preparations. Brain Res. Bull. 7, 237–242.

    PubMed  CAS  Google Scholar 

  • Milosevic P., Jorga I., and Milosevic A. (1989) Brain capillary transport of glucose during fatiguing physical work: effect of ascorbic acid. Med. Sci. Res. 17, 11,12.

    CAS  Google Scholar 

  • Mitchell R. (1980) A novel GABA receptor modulates stimulus-induced glutamate release from corticostriatal terminals. Eur. J. Pharmacol. 67, 119–122.

    PubMed  CAS  Google Scholar 

  • Moody E. J., Suzdak P. D., Paul S. M., and Skolnick P. (1988) Modulation of the benzodiazepine/gamma-aminobutyric acid receptor chloride-channel complex by inhalation anaesthetics. J. Neurochem. 51, 1386–1393.

    PubMed  CAS  Google Scholar 

  • Mueller K., Palmour R., Andrews D., and Knott P. J. (1985) In vivo voltammetric evidence of production of uric acid by rat caudate. Brain Res. 335, 231–235.

    PubMed  CAS  Google Scholar 

  • Nakahara M. and Shimizu K. (1992) Effects of electrolyte on the structure of pyrolytic graphite surfaces in anodic oxidation. J. Mater. Sci. 27, 1207–1211.

    CAS  Google Scholar 

  • Nelson A. and Auffret N. (1988) Phospholipid monolayers of di-oleoyl lecithin (di-o-PC) at the mercury water interface. Effect on faradaic reactions. J. Electroanal. Chem. 248, 167–180.

    CAS  Google Scholar 

  • Nicholson R. S. and Shain I. (1964) Theory of stationary electrode polarography. Anal. Chem. 36, 706–723.

    CAS  Google Scholar 

  • O’Connor J. J. and Kruk Z. L. (1991) Frequency dependence of 5-HT autoreceptor function in rat dorsal raphe and suprachiasmatic nuclei studied using fast cyclic voltammetry. Brain Res. 568, 123–130.

    PubMed  Google Scholar 

  • Oh C., Gardiner T. W., and Rebec G. V. (1989) Blockade of both D1-and D2-dopamine receptors inhibits amphetamine-induced ascorbate release in the neostriatum. Brain Res. 80, 184–189.

    Google Scholar 

  • O’Neill R. D. (1994) Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo—a review. Analyst 119, 767–779.

    PubMed  Google Scholar 

  • O’Neill R. D. and Fillenz M. (1985a) Detection of homovanillic acid in vivo using microcomputer-controlled voltammetry: simultaneous monitoring of rat motor activity and striatal dopamine release. Neuroscience 14, 753–763.

    PubMed  Google Scholar 

  • O’Neill R. D. and Fillenz M. (1985b) Circadian changes in extracellular ascorbate in rat cortex accumbens stria turn and hippocampus: correlations with motor activity. Neurosci. Lett. 60, 331–336.

    PubMed  Google Scholar 

  • O’Neill R. D., Fillenz M., and Albery W. J. (1982a) Circadian changes in homovanillic acid and ascorbate levels in the rat striatum using microprocessor-controlled voltammetry. Neurosci. Lett. 34, 189–193.

    PubMed  Google Scholar 

  • O’Neill R. D., Grunewald R. A., Fillenz M, and Albery W. J. (1982b) Linear sweep voltammetry with carbon paste electrodes in the rat striatum. Neuroscience 7, 1945–1954.

    PubMed  Google Scholar 

  • O’Neill R. D., Fillenz M., and Albery W. J. (1983a) The development of linear sweep voltammetry with carbon paste electrodesinvivo. J. Neurosci. Methods 8, 263–273.

    PubMed  Google Scholar 

  • O’Neill R. D., Fillenz M., Albery W. J., and Goddard N. J. (1983b) The monitoring of ascorbate and monoamine transmitter metabolites in the striatum of unanaesthetised rats using microprocessor-based voltammetry. Neuroscience 9, 87–93.

    PubMed  Google Scholar 

  • O’Neill R. D., Grunewald R. A., Fillenz M., and Albery W. J. (1983c) The effect of unilateral cortical lesions on the circadian changes in rat striatal ascorbate and homovanillic acid levels measured in vivo using voltammetry. Neurosci. Lett. 42, 105–110.

    PubMed  Google Scholar 

  • O’Neill R. D., Fillenz M., Grunewald R. A., Bloomfield M. R., Albery W. J., Jamieson M., Williams J. H., and Gray J. A. (1984a) Voltammetric carbon paste electrodes monitor uric acid and not 5HIAA at the 5-hydroxyindole potential in the rat brain. Neurosci, Lett. 45, 39–46.

    Google Scholar 

  • O’Neill R. D., Fillenz M., Sundstrom L., and Rawlins J. N. P. (1984) Voltammetrically monitored brain ascorbate as an index of excitatory amino acid release in the unrestrained rat. Neurosci. Lett. 52, 227–233.

    PubMed  Google Scholar 

  • O’Neill R. D., Gonzalez-Mora J. L., Boutelle M. G., Ormonde D. E., Lowry J. P., Duff A., Fumero B., Fillenz M., and Mas M. (1991) Anomalously high concentrations of brain extracellular uric acid detected with chronically implanted probes: implications for in vivo sampling techniques. J. Neurochem. 57, 22–29.

    PubMed  Google Scholar 

  • Ormonde D. E. and O’Neill R. D. (1990) The oxidation of ascorbic acid at carbon paste electrodes. Modified response following contact with surfactant, lipid and brain tissue. J. Electroanal. Chem. 279, 109–121.

    CAS  Google Scholar 

  • O’Shea T. J., Weber P. L., Bammel B. P., Lunte C. E., Lunte S. M., and Smyth M. R. (1992) Monitoring excitatory amino acid release in vivo by microdialysis with capillary electrophoresis-electrochemistry. J. Chromatogr. 608, 189–195.

    PubMed  Google Scholar 

  • Padh H. (1990) Cellular functions of ascorbic acid. Biochem. Cell iol. 68, 1166–1173.

    CAS  Google Scholar 

  • Parsey R. V. and Matteson D. R. (1993) Ascorbic acid modulation of calcium channels in pancreatic Beta cells. J. Gen. Physiol. 102, 503–523.

    PubMed  CAS  Google Scholar 

  • Peng T. Z., Lu H. H., Liu G. Q., and Cao Y. P. (1992) An improved electrochemical procedure for treating carbon fiber electrodes for in vivo determination of some neurotransmitters. Anal. Lett. 25, 795–805.

    CAS  Google Scholar 

  • Phillips A. G., Atkinson L. J., Blackburn J. R., and Blaha D. (1993) Increased extracellular dopamine in the nucleus accumbens of the rat elicited by a conditional stimulus for food: an electrochemical study. Can. J. Physiol. Pharmacol. 71, 387–393.

    PubMed  CAS  Google Scholar 

  • Pierce R. C, Miller D. W., Reising D. and Rebec G. V. (1992) Unilateral neostriatal kainate, but not 6-OHDA, lesions block dopamine agonist-mduced ascorbate release in the neostnatum of freely moving rats. Brain Res. 597, 138–143.

    PubMed  CAS  Google Scholar 

  • Pierce R. and Rebec G. V. (1992) Dopamine-, NMDA-, and sigmareceptor antagonists exert differential effects on basal and amphetamine-induced changes in neostriatal ascorbate and DOPAC in awake, behaving rats. Brain Res. 579, 59–66.

    PubMed  CAS  Google Scholar 

  • Pierce R. and Rebec G. V. (1993) Intraneostriatal administration of glutamate antagonists increases behavioral activation and decreases neostriatal ascorbate via nondopaminergic mechanisms. J. Neurosci. 13, 4272–4280.

    PubMed  CAS  Google Scholar 

  • Pierce R. C, Rowlett J. K., Bardo M. T., and Rebec G. V. (1991) Chronic ascorbate potentiates the effects of chronic haloperidol on behavioral supersensitivity but not D2 dopamine receptor binding. Neuroscience 45, 373–378.

    PubMed  CAS  Google Scholar 

  • Ponchon J. L., Cespuglio R., Gonon F., Jouvet M., and Pujol J. F. (1979) Normal pulse polarography with carbon fibre electrodes for in vitro and in vivo determination of catecholamines. Anal. Chem. 51, 1483–1486.

    PubMed  CAS  Google Scholar 

  • Pratt O. E. and Greenwood J. (1986) Movement of vitamins across the blood-brain barrier, in Blood-Brain Barrier in Health and Disease (Suckling A. J., Rumsby M. G., and Bradbury M. W. eds.), Ellis Horwood, Chichester, England, pp. 87–97.

    Google Scholar 

  • Puig S., Rivot J. P., and Besson J. M. (1992) Effect of subcutaneous administration of the chemical algogen formalin, on 5-HT metabolism in the nucleus raphe magnus and the medullary dorsal horn: a voltammetric study in freely moving rats. Brain Res. 590, 250–254.

    PubMed  CAS  Google Scholar 

  • Rebec G. V., Langley P. E., Pierce R. C, Wang Z., and Heidenreich B. A. (1993) A simple micromanipulator for multiple uses in freely moving rats: electrophysiology, voltammetry, and simultaneous intracerebral infusions. J. Neurosci. Methods 47, 53–59.

    PubMed  CAS  Google Scholar 

  • Rice M. E. and Cammack J. (1991) Anoxia-resistant turtle brain maintains ascorbic acid content in vitro. Neurosci. Lett. 132, 141–145.

    PubMed  CAS  Google Scholar 

  • Rice M. E., Galus Z., and Adams R. N. (1983) Graphite paste electrodes. Effects of paste composition and surface states on electron transfer rates. J. Electroanal. Chem. 143, 89–102.

    CAS  Google Scholar 

  • Rivot J. P., Pointis D., and Besson J. M. (1988) In vivo electrochemical detection of 5-hydroxyindole within the trigeminal nucleus caudatus of freely moving rats: the effect of morphine. Brain Res. 463, 275–283.

    PubMed  CAS  Google Scholar 

  • Ruggeri M., Zoli M., Grimaldi R., Ungerstedt U., Eliasson A., Agnati L. F., and Fuxe K. (1990) Aspects of neural plasticity in the central nervous system. III. Methodological studies on the microdialysis technique. Neurochem. Int. 16, 427–435.

    PubMed  CAS  Google Scholar 

  • Schroeder T. J., Jankowski J. A., Kawagoe K. T., Wightman R. M., Lefrou C., and Amatore C. (192) Analysis of diffusional broadening of vesicular packets of catecholamines released from biological cells during exocytosis. Anal. Chem. 64, 3077–3083.

    Google Scholar 

  • Shin D. B. and Feather M. S. (1990) The degradation of L-ascorbic acid in neutral solutions containing oxygen. J. Carbohydr. Chem. 9, 461–469.

    CAS  Google Scholar 

  • Slater P., Simpson M. D. C, Hunter A. J., and Cross A. J. (1992) Loss of excitatory amino acid transport sites after lesioning a glutamatergic pathway in rat brain. Neurosci. Res. Commun. 10, 135–140.

    CAS  Google Scholar 

  • Slivka A., Brannan T. S., Weinberger J., Knott P. J., and Cohen G. (1988) Increase in extracellular dopamine in the striatum during cerebral ischemia: a study utilizing cerebral microdialysis. J. Neurochem. 50, 1714–1718.

    PubMed  CAS  Google Scholar 

  • Smith A. D., Olson R. J., and Justice J. B. Jr. (1992) Quantitative microdialysis of dopamine in the striatum: effect of arcadian variation. J. Neurosci. Methods 44, 33–41.

    PubMed  CAS  Google Scholar 

  • Spector R. and Lorenzo A. V. (1974) Specificity of ascorbic acid transport system of the central nervous system. Am. J. Physiol. 226, 1468–1473.

    PubMed  CAS  Google Scholar 

  • Spector R., Spector A. Z., and Snodgrass S. R. (1977) Model of transport in the central nervous system. Am. J. Physiol. 232, R73–R79.

    PubMed  CAS  Google Scholar 

  • Stamford J. A. (1986) Effect of electrocatalytic and nucleophilic reactions on fast voltammetric measurements of dopamine at carbon fiber microelectrodes. Anal. Chem. 58, 1033–1036.

    PubMed  CAS  Google Scholar 

  • Stamford J. A., Kruk Z. L., and Millar J. (1984) Regional differences in extracellular ascorbic acid levels in the rat brain determined by high-speed cyclic voltammetry. Brain Res. 299, 289–295.

    PubMed  CAS  Google Scholar 

  • Strein T. G. and Ewing A. G. (1991) In situ laser activation of carbon fiber microdisk electrodes. Anal. Chem. 63, 194–198.

    CAS  Google Scholar 

  • Sujaritvanichpong S., Aoki K., Tokuda K., and Matsuda H. (1986) Electrochemical behavior of dopamine at carbon fibre electrodes. J. Electroanal. Chem. 198, 195–203.

    CAS  Google Scholar 

  • Sutor B. and Ten Bruggencate G. (1990) Ascorbic acid: a useful reductant to avoid oxidation of catecholamines in electrophysiological experiments in vitro? Neurosa. Lett. 116, 287–292.

    CAS  Google Scholar 

  • Svensson L., Wu C, Hulthe P., Johannessen K., and Engel J. A. (1992a) Rapid changes in ascorbate and dopamine release in rat nucleus accumbens after intracerebroventricular administration of NMDA. Brain Res. 586, 195–202.

    PubMed  CAS  Google Scholar 

  • Svensson L., Wu C, Johannessen K., and Engel J. A. (1992b) Effect of ethanol on ascorbate release in the nucleus accumbens and striatum of freely moving rats. Alcohol 9, 535–540.

    PubMed  CAS  Google Scholar 

  • Swain G. M. and Kuwana T. (1991) Electrochemical formation of high surface area carbon fibers. Anal. Chem. 63, 517–519.

    CAS  Google Scholar 

  • Swain G. M. and Kuwana T. (1992) Anodic fracturing and vacuum heat treated annealing of pitch-based carbon fibers. Anal. Chem. 64, 565–568.

    CAS  Google Scholar 

  • Tanaka K. and Kashiwagi N. (1989) In vivo voltammetry with an ultramicroelectrode. J. Electroanal. Chem. 275, 95–98.

    Google Scholar 

  • Tanelian D. L., Kosek P., Mody I., and MacIver M. B. (1993) The role of the GABAA receptor/chloride channel complex in anesthesia. Anesthesiology 78, 757–776.

    PubMed  CAS  Google Scholar 

  • Taqui Khan M. M., and Martell A. E. (1967) Metal ion and metal chelate catalysed oxidation of ascorbic acid by molecular oxygen. I. Cupric and ferric ion catalysed oxidation J. Am. Chem. Soc. 89, 4176–4185.

    Google Scholar 

  • Taylor A., Jacques P. F., Nadler D., Morrow F., Sulsky S. I., and Shepard D. (1991) Relationship in humans between ascorbic acid consumption and levels of total and reduced ascorbic acid in lens, aqueous humor, and plasma. Curr. Eye Res. 10, 751–759.

    PubMed  CAS  Google Scholar 

  • Todd R. D. and Bauer P. (1988) Ascorbate modulates 5-[3H]hydroxy-tryptamine binding to central 5-HT3 sites in bovine frontal cortex. J. Neurochem. 50, 1505–1512.

    PubMed  CAS  Google Scholar 

  • Tolbert L C, Morris P. E. Jr., Spollen J. J., and Ashe S. C. (1992) Stereo-specific effects of ascorbic acid and analogues on D1 and D2 agonist binding. Life Sci. 51, 921–930.

    PubMed  CAS  Google Scholar 

  • Ueda C., Tse D. C., and Kuwana T. (1982) Stability of catechol modified carbon electrodes for electrocatalysis of dihydronicotinamide adenine dinucleotide and ascorbic acid. Anal. Chem. 54, 850–856.

    CAS  Google Scholar 

  • Vera J. C, Rivas I., Fischbarg J., and Golde D. W. (1993) Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364, 79–82.

    PubMed  CAS  Google Scholar 

  • Vulto A. G., Sharp T., Ungerstedt U., and Versteeg D. H. G. (1988) Rapid postmortem increase in the extracellular dopamme in the rat brain as assessed by brain microdialysis. J. Neurochem. 51, 746–749.

    PubMed  CAS  Google Scholar 

  • Walaas I. (1981) Biochemical evidence for overlapping neocortical and allocortical glutamate projections to the nucleus accumbens and rostral caudatoputamen in the rat brain. Neuroscience 6, 399–405.

    PubMed  CAS  Google Scholar 

  • Wang J., Tuzhi P., and Villa V. (1987) Activation of carbon fiber microelectrodes by alternating current electrochemical treatment. J. Electroanal. Chem. 234, 119–131.

    CAS  Google Scholar 

  • Wehmeyer K. R. and Wightman R. M. (1985) Cyclic voltammetry and anodic stripping voltammetry with mercury ultramicroelectrodes. Anal. Chem. 57, 1989–1993.

    CAS  Google Scholar 

  • Wenkstern D., Pfaus J. G., and Fibiger H. C. (1993) Dopamine transmission increases in the nucleus accumbens of male rats during their first exposure to sexually receptive female rats. Brain Res. 618, 41–46.

    PubMed  CAS  Google Scholar 

  • Wiener H. L., Lajtha A., and Sershen H. (1989) Ascorbic acid inhibits [3H]SCH-23390 binding to striatal dopamine D1 receptors. J. Recept. Res. 9, 331–340.

    PubMed  CAS  Google Scholar 

  • Wilson J. X. (1989) Ascorbic acid uptake by a high-affinity sodium-dependent mechanism in cultured rat astrocytes J. Neurochem. 53, 1064–1071.

    PubMed  CAS  Google Scholar 

  • Wilson J. X. and Dixon S. J. (1989) Ascorbic acid transport in mouse and rat astrocytes is reversibly inhibited by furosemide, SITS and DIDS. Neurochem. Res. 14, 1169–1175.

    PubMed  CAS  Google Scholar 

  • Wilson J. X, Jaworski E M., and Dixon S. J. (1991) Evidence for electrogenic sodium-dependent ascorbate transport in rat astrogha. Neurochem. Res. 16, 73–78.

    PubMed  CAS  Google Scholar 

  • Wilson R. L. and Wightman R. M. (1985) Systemic and nigral application of amphetamine both cause an increase in extracellular concentration of ascorbate in the caudate nucleus of the rat. Brain Res. 339, 219–226.

    PubMed  CAS  Google Scholar 

  • Wilson R. L., Kamata K., Bigelow J. C., Rebec G. V., and Wightman R. M. (1986) Crus cerebri lesions abolish amphetamine-induced ascorbate release in the rat neostriatum. Brain Res. 370, 393–396.

    PubMed  CAS  Google Scholar 

  • Woodroofe M. N., Sarna G. S., Wadhwa M., Hayes G. M, Loughlin A. J., Tinker A., and Cuzner M. L. (1991) Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33, 227–236.

    PubMed  CAS  Google Scholar 

  • Xie Y. M. and Sherwood P. M. A. (1991) X-ray photoelectron spectroscopic studies of carbon fibers. 15. Electrochemical treatment on pitch-based fibers by potentiostatic and galvanostatic methods. Appl. Spectrosc. 45, 1158–1165.

    CAS  Google Scholar 

  • Yamamoto B. K. and Davy S. (1992) Dopaminergic modulation of glutamate releaseinstriatum as measured by microdialysis. J. Neurochem. 58, 1736–1742.

    PubMed  CAS  Google Scholar 

  • Yount S. E., Kraft M. E., Pierce R. C, Langley P. E., and Rebec G. V. (1991) Acute and long-term amphetamine treatments alter extracellular ascorbate in neostriatum but not nucleus accumbens of freely moving rats. Life Set. 49, 1237–1244.

    CAS  Google Scholar 

  • Zetterstrom T., Sharp T., Marsden A., and Ungerstedt U. (1983) In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine. J. Neurochem. 41, 1769–1773.

    PubMed  CAS  Google Scholar 

  • Zetterstrom T., Wheeler D. B., Boutelle M. G., and Fillenz M. (1991) Striatal ascorbate and its relationship to dopamine receptor stimulation and motor activity. Eur. J. Neurosci. 3, 940–946.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press, Inc.

About this protocol

Cite this protocol

O’Neill, R.D. (1995). The Measurement of Brain Ascorbate In Vivo and Its Link with Excitatory Amino Acid Neurotransmission. In: Boulton, A.A., Baker, G.B., Adams, R.N. (eds) Voltammetric Methods in Brain Systems. Neuromethods, vol 27. Humana Press. https://doi.org/10.1385/0-89603-312-0:221

Download citation

  • DOI: https://doi.org/10.1385/0-89603-312-0:221

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-312-2

  • Online ISBN: 978-1-59259-632-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics