Skip to main content

Regional Differences in Dopamine Release, Uptake, and Diffusion Measured by Fast-Scan Cyclic Voltammetry

  • Protocol
Voltammetric Methods in Brain Systems

Part of the book series: Neuromethods ((NM,volume 27))

Abstract

The neurotransmitter dopamine (DA) is present in high concentrations in select areas of the central nervous system (CNS), including the striatal and limbic regions. Appropriate control of its role in communication between neurons is clearly important for normal function. Possibly the most recognizable aspect of improper regulation of DA is Parkinson’s disease. The symptoms of this neurodegenerative disorder, which affects the control of motor activity and results from deterioration of nigrostriatal DA neurons, are treated by various means that attempt to restore dopaminergic capacity. Dopamine is also thought to subserve cognitive, emotive, and even endocrine functions, and has been implicated in other neuropathologies, such as schizophrenia and substance addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams R. N. (1990) In vivo electrochemical measurements in the CNS. Prog. Neurobiol. 35, 297–311.

    PubMed  CAS  Google Scholar 

  • Altar C. A., Boyar W. C., Oei E., and Wood P. L. (1987) Dopamine autoreceptors modulate the in vivo release of dopamine in the frontal, cingulate and entorhinal cortices. J. Pharmacol. Exp. Ther. 242, 115–120.

    PubMed  CAS  Google Scholar 

  • Anden N. E., Fuxe K., Hamberger B., and Hokfelt T. (1966) A quantitative study of the nigroneostriatal dopamine neuron system in the rat. Acta Physiol. Scand. 67, 306–312.

    PubMed  CAS  Google Scholar 

  • Annunziato L., Leblanc P., Kordan C, and Weiner R. I. (1980) Differences in the kinetics of dopamine uptake in synaptosome preparations of the median eminence relative to other dopaminergically innervated brain regions. Neuroendocrinology 31, 316–320.

    PubMed  CAS  Google Scholar 

  • Armstrong D. L. and Lester H. A. (1979) The kinetics of tubocurarine action and restricted diffusion within the synaptic cleft. J. Physiol. (Lond.) 294, 365–386.

    CAS  Google Scholar 

  • Bannon M. J and Roth R. H. (1983) Pharmacology of mesocortical dopamine neurons. Pharmacol. Rev. 35, 53–68.

    PubMed  CAS  Google Scholar 

  • Bartol T. M., Land B. R., Salpeter E. E., and Salpeter M. M. (1991) Monte Carlo simulation of miniature endplate current generation in the vertebrate neuromuscular junction. Biophys. J. 59, 1290–1307.

    PubMed  CAS  Google Scholar 

  • Baur J. E., Kristensen E. W., May L. J., Wiedemann D. J., and Wightman R. M. (1988) Fast-scan voltammetry of biogenic amines. Anal. Chem. 60, 1268–1272.

    PubMed  CAS  Google Scholar 

  • Bean A. J. and Roth R. H. (1991) Extracellular dopamine and neurotensin in rat prefrontal cortex in vivo: effects of median forebrain bundle stimulation frequency, stimulation pattern, and dopamine autoreception. J. Neurosci. 11, 2694–2702.

    PubMed  CAS  Google Scholar 

  • Boja J. W., Mitchell W. M., Patel A., Kopajtic T. A., Carroll F. I., Lewin A. H., Abraham P., and Kuhar M. J. (1992) High-affinity binding of [125I]RTI-55 to dopamine and serotonin transporters in rat brain. Synapse 12, 27–36.

    PubMed  CAS  Google Scholar 

  • Boyson S. J., McGonigle P., and Molinoff P. B. (196) Quantitaive autoradiographic localization of the Dl and D2 subtypes of dopamine receptors in rat brain. J. Neurosci. 6, 3177–3188.

    Google Scholar 

  • Bjorklund A. and Lindvall O. (1984) Dopamine-containing systems in the CNS, in Handbook of Chemical Neuroanatomy (Bjorklund A. and Hokfelt T., eds.), Elsevier, New York, pp. 55–122.

    Google Scholar 

  • Bouyer J. J., Joh T. H., and Pickel V. M. (1984) Ultrastructural localization of tyrosine hydroxylase in rat nucleus accumbens. J. Neurol. 227, 92–103.

    CAS  Google Scholar 

  • Bracewell R. N. (1986) The Fourier Transform and Its Applications. McGraw-Hill, New York, pp. 345–355.

    Google Scholar 

  • Bull D. R., Bakhtiar R., and Sheehan M. J. (1991) Characterization of dopamine autoreceptors in the amygdala: a fast cyclic voltammetric study in vitro. Neurosci. Lett. 134, 41–44.

    PubMed  CAS  Google Scholar 

  • Capella P., Ghasemzadeh M. B., Adams R. N., Wiedemann D. J., and Wightman R. M. (1993) Real-time monitoring of electrically stimu-lated norepinephrine release in rat thalamus. II. Modeling of release and reuptake characteristics of stimulated norepinephrine overflow. J. Neurochem. 60, 442–453.

    PubMed  Google Scholar 

  • Chiodo L. A. (1988) Dopamine-containing neurons in the mammalian central nervous system: electrophysiology and pharmacology. Neurosci. Biobehav. Rev. 12, 49–91.

    PubMed  CAS  Google Scholar 

  • Cooper J. C, Bloom F. E., and Roh R. H. (1991) The Biochemical Basis of Neuropharmacology. Oxford University Press, New York.

    Google Scholar 

  • Crank J. (1975) The Mathmatics of Diffusion. Oxford University Press, London, pp. 47–53.

    Google Scholar 

  • Cunnane T. C., and Stjarne L. (1984) Transmitter secretion from individual varicosities of guinea-pig and mouse vas deferens: highly intermittent and monoquantal. Neuroscience 13, 1–20.

    PubMed  CAS  Google Scholar 

  • Dawson T. M., Gehlert D. R., McCabe R. T., Barnett A., and Wamsley J. K. (1986) D-l dopamine receptors in the rat brain: a quantitative autoradiographic analysis. J. Neurosci. 6, 2352–2365.

    PubMed  CAS  Google Scholar 

  • Deakin M. R., Koavach P. M., Stutts K. J., and Wightman R. M. (1986) Heterogeneous mechanisms of the oxidation of catechols and ascorbic acid at carbon electrodes. Anal. Chem. 58, 1474–1480.

    PubMed  CAS  Google Scholar 

  • Demarest K. T. and Moore K. E. (1979) Lack of a high affinity transport system for dopamine in the median emmence and posterior pituitary. Brain Res. 171, 545–551.

    PubMed  CAS  Google Scholar 

  • Descarries L., Lemay B., Doucet G., and Berger B. (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21, 807–824.

    PubMed  CAS  Google Scholar 

  • Doucet G., Descarries L., and Garcia L. (1986) Quantification of the dopamine mnervation in adult rat neostriatum. Neuroscience 19, 427–445.

    PubMed  CAS  Google Scholar 

  • Eccles J. C. and Jaeger J. C. (1958) The relationship between the mode of operation and the dimensions of the junctional regions at synapses and motor end-organs. Proc. R. Soc. Lond. Biol. Sci. 148, 38–56.

    CAS  Google Scholar 

  • Eldon S. E., Horst K. C, Ely T., and Kilts C. D. (1994) Functional mapping of the dopamine transport complex in the rat brain: presence of low affinity transporters in the amygdaloid complex and prefrontal cortex. Synapse (in press).

    Google Scholar 

  • Engstrom R. C, Wightman F. M., and Kristensen E. W. (1988) Diffusional distortion in the monitoring of dynamic events. Anal. Chem. 60, 652–656.

    CAS  Google Scholar 

  • Ewing A. G., Bigelow J. C, and Wightman R. M. (1983) Direct for in vivo monitoring of dopamme released from two striatal compartments in the rat. Science 221, 169–171.

    PubMed  CAS  Google Scholar 

  • Ewing A. G. and Wightman R. M. (1984) Monitoring the stimulated release of dopamme with in vivo voltammetry. II. Clearance of released dopamine from extracellular fluid. J. Neurochem. 43, 570–577.

    PubMed  CAS  Google Scholar 

  • Freund T. F., Powell J. F., and Smith A. D. (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13, 1189–1215.

    PubMed  CAS  Google Scholar 

  • Fuxe K. and Agnati L. F. (1991) Two principal modes of electrochemical communication in the brain: volume versus wiring transmission, in Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission. (Fuxe K. and Agnati L. F., eds.), Raven, New York, pp. 1–9.

    Google Scholar 

  • Garris P. A., Collins L. B., Jones S. R., and Wightman R. M. (1993) Evoked extracellular dopamine in vivo in the medial prefrontal cortex. J. Neurochem. 61, 637–647.

    PubMed  CAS  Google Scholar 

  • Garris P. A. and Wightman R. M. (1994a) Different kinetics govern dopaminergic transmission in the amydala, prefrontal cortex, and striatum: an in vivo voltammetric study. J. Neurosci. 14, 442–450.

    PubMed  CAS  Google Scholar 

  • Garris P. A. and Wightman R. M. (1994b) In vivo voltammetric measurement of evoked extracellular dopamine in the rat basolateral amygdaloid nucleus. J. Physiol. 478, 239–249.

    PubMed  CAS  Google Scholar 

  • Garris P. A. and Wightman R. M. Pharmacology of evoked dopamine overflow in the basolateral amygdaloid nucleus and comparison to the striatum. (submitted)

    Google Scholar 

  • Garris P. A., Ciolkowski E. L., and Wightman R. M. (1994a) Heterogeneity of evoked dopamine overflow in striatal and striatomygdaloid regions. Neuroscience 59, 417–427.

    PubMed  CAS  Google Scholar 

  • Garris P. A., Ciolkowski E. L., Pastore P., and Wightman R. M. (1994b) Efflux of synaptic dopamine in the nucleus accumbens of the rat brain. J. Neurosci. 14, 6084–6093.

    PubMed  CAS  Google Scholar 

  • Gerhardt G. A., Oke A. F., Nagy G., Moghaddam and Adams R. N. (1984) Nafion-coated electrodes with high selectivity for CNS electrochemistry. Brain Res. 290, 390–395.

    PubMed  CAS  Google Scholar 

  • Ghasemzadeh M. B., Capella P., Mitchell K., and Adams R. N. (1993) Real-time monitoring of electrically stimulated norepinephrine release in rat thalamus. I. Resolution of transmitter and metabolite signal component. J. Neurochem. 60, 442–453.

    PubMed  CAS  Google Scholar 

  • Giros B., and Caron M.G. (1993) Molecular characterization of the dopamine transporter. TIPS 14, 43–49.

    PubMed  CAS  Google Scholar 

  • Glowinski J., Tassin J. P., and Thierry A. M. (1984) The mesocortico-prefrontal dopaminergic neurons. TINS 7, 414–418.

    Google Scholar 

  • Gonon F. G., Suaud-Chagny M. F., Mermet C. C., and Buda M. (1991) Relation between impulse flow and extracellular catecholamine levels as studied by in vivo electrochemistry in CNS, in Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission. (Fuxe K. and Agnati L. F., eds.), Raven, New York, pp. 337–350.

    Google Scholar 

  • Graybiel A. M. (1984) Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience 13, 1157–1187.

    PubMed  CAS  Google Scholar 

  • Hoffmann I. S., Talmaciu R. K., Ferro C. P., and Cubeddu L. X. (1988) Sustained high release at rapid stimulation rates and reduced functional autoreceptors characterize prefrontal cortex dopamine terminals. J. Pharmacol. Exp. Ther. 245, 761–772.

    PubMed  CAS  Google Scholar 

  • Horn A. S. (1990) Dopamine uptake: a review of progress in the last decade. Prog. Neurobiol. 34, 387–400.

    PubMed  CAS  Google Scholar 

  • Hornykiewicz O. and Kish S. J. (1986) Biochemical pathophysiology of Parkinson’s disease, in Advances in Neurology (Yahr M. D. and Bergmann K. J., eds.), Raven, New York, pp. 19–34.

    Google Scholar 

  • Johnson S. W., Hoffer B. J., and Freedman R. (1986) Investigation of the failure of parenterally administered haloperidol to antagonize dopamine released from micropipettes in the caudate. J. Neurosci. 6, 572–580.

    PubMed  CAS  Google Scholar 

  • Jones S. R., Michelson G. E., Collins L. B., Kawagoe K. T., and Wightman R. M. (1994) Interference by pH and Ca2+ ions during measurements of catecholamine release in slices of rat amygdala with fast-scan cyclic voltammetry. J. Neurosci. Methods 52, 1–10.

    PubMed  CAS  Google Scholar 

  • Jones S. R., Garris P. A., Wightman R. M., and Kilts C. D. Comparison of dopamine uptake in the basolateral amygdaloid nucleus and striatum of the rat. (submitted)

    Google Scholar 

  • Joyce J. N., Sapp, D. W., and Marshall J. F. (1986) Human striatal dopamine receptors are organized in compartments. Proc. Natl. Acad. Sci. USA 83, 8002–8006.

    PubMed  CAS  Google Scholar 

  • Justice J. B., Nicolaysen L. C, and Michael A. C. (1988) Modeling the dopaminergic nerve terminal. J. Neurosci. Methods 22, 239–252.

    PubMed  Google Scholar 

  • Katz B. and Miledi R. (1973) The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. (Lond.) 231, 549–573. Kawagoe KGarris P. A., and Wightman R. M. (1992) Regulation of transient dopamine concentration gradients in the microenvironment surrounding nerve terminals in the rat striatum. Neuroscience 51, 55-64.

    CAS  Google Scholar 

  • Kawagoe K. T., Garris P. A., and Wightman R. M. (1993) pH-dependent processes at Nafion-coated carbon-fiber microelectrode. J. Electroanal. Chem. Interfacial Electrochem. 359, 193–207.

    CAS  Google Scholar 

  • Kawagoe K., Zimmerman J. B., and Wightman R. M. (1993) Principles of voltammetry and microelectrode surface states. J. Neurosci. Methods 48, 225–240.

    PubMed  CAS  Google Scholar 

  • Kennedy R. T., Jones S. R., and Wightman R. M. (1992) Dynamic observation of dopamine autoreceptor effects in rat striatal slices. J. Neurochem. 59, 449–455.

    PubMed  CAS  Google Scholar 

  • Kilts C. D. and Anderson C. M. (1987) Mesoamygdaloid dopamine neurons: differential rates of dopamme turnover in discrete amygdal-oid nuclei of the rat brain. Brain Res. 416, 402–408.

    PubMed  CAS  Google Scholar 

  • Kilts C. D., Anderson C. M., Ely T. D., and Mailman R. B. (1988) The biochemistry and pharmacology of dopamine neurons. Ann. NY Acad. Sci. 537, 173–187.

    PubMed  CAS  Google Scholar 

  • Kristensen E. W., Kuhr W. G., and Wightman R. M. (1987) Temporal characterization of perfluorinated ion exchange coated micro-voltammetric electrodes for in vivo use. Anal. Chem. 59, 1752–1757.

    PubMed  CAS  Google Scholar 

  • Kuhr W. G., Wightman R. M., and Rebec G. V. (1987) Dopaminergic neurons: simultaneous measurements of dopamine release and single-unit activity during stimulation of the medial forebrain bundle. Brain Res. 419, 122–128.

    Google Scholar 

  • Kuhr W. G., Ewing A. G., Caudill W. L., and Wightman R. M. (1984) Monitoring the stimulated release of dopamine with in vivo voltammetry. I. Characterization of the response observed in the caudate nucleus of the rat. J. Neurochem. 43, 560–569.

    PubMed  CAS  Google Scholar 

  • Le Moal M. and Simon H. (1991) Mesocorticolimbic dopamine network: functional and regulatory roles. Physiol. Rev. 71, 155–234.

    PubMed  Google Scholar 

  • Limberger N., Trout S. J., Kruk Z. L., and Starke K. (1991) “Real time” measurement of endogenous dopamine release during short trains of pulses in slices of rat neostriatum and nucleus accumbens: role of autoinhibition. Naunyn-Schmiedebergs Arch. Pharmacol. 344, 623–629.

    PubMed  CAS  Google Scholar 

  • Marsden C. A., Joseph M. H., Kruk Z. L., Maidment N. T., O’Neill R. D., Schenk J. O., and Stamford J. A. (1988) In vivo voltammetry: present electrodes and methods. Neuroscience 25, 389–400.

    PubMed  CAS  Google Scholar 

  • Marshall J. F., O’Dell S. J., Navarrete R., Rosenstein A. J. (1990) Dopamine high-affinity transport site topography in rat brain: major differences between dorsal and ventral striatum. Neuroscience 37, 11–21.

    PubMed  CAS  Google Scholar 

  • May L. J. and Wightman R. M. (1989) Heterogeneity of stimulated dopamine overflow within the rat striatum as observed with in vivo voltammetry. Brain Res. 487, 311–320.

    PubMed  CAS  Google Scholar 

  • May L. J., Kuhr W. G., and Wightman R. M. (1988) Differentiation of dopamine overflow and uptake processes in the extracellular fluid of the rat caudate nucleus with fast-scan in vivo voltammetry. J. Neurochem. 51, 1060–1069.

    PubMed  CAS  Google Scholar 

  • Mayer A., Limberger N., and Starke K. (1988) Transmitter release patterns of noradrenergic, dopaminergic and chohnergic axons in rabbit brain slices during short pulse trains, and the operation of presynaptic autoreceptors. Naunyn-Schmiedebergs Arch. Pharmacol. 338, 632–643.

    PubMed  CAS  Google Scholar 

  • Mennicken F., Savasta M., Peretti-Renucci R., Feuerstein C. (1992) Autoradiographic localization of dopamine uptake sites in the rat brain with 3H-GBR 12935. J. Neural Transm. 87, 1–14.

    CAS  Google Scholar 

  • Michael A. C, Ikeda M., and Justice J. B. (1987) Mechanisms contributing to the recovery of striatal releasable dopamine following MFB stimulation. Brain Res. 421, 325–335. Michael A. C, Wightman R. M., and Amatore C. A. (1989) Microdisk electrodes. I. Digital simulation with a conformai map. J Electroanal. Chem. Interfacial Electrochem. 267, 33-45.

    PubMed  CAS  Google Scholar 

  • Millar J., Stamford J. A., Kruk Z. L., and Wightman R. M. (1985) Electrochemical, pharmacological and electrophysiological evidence of rapid dopamine release and removal in the rat caudate nucleus following electrical stimulation of the medial forebrain bundle. Eur. J. Pharmacol. 109, 341–348.

    PubMed  CAS  Google Scholar 

  • Mitchell K., Oke A. F., and Adams R. N. (1994) In vivo dynamics of norepinephrine release-reuptake in multiple terminal field regions of rat brain. J. Neurochem. 63, 917–926.

    PubMed  CAS  Google Scholar 

  • Moghaddam B. and Bunney B. S. (1990) Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens and striatum of the rat: an in vivo microdialysis study. J. Neurochem. 54, 1755–1760.

    PubMed  CAS  Google Scholar 

  • Moore R. Y. and Card J. P. (1984) Noradrenaline-containing neuron systems, in Classical Transmitters in the CNS, Part I (Bjorklund A. and Hokfelt T., eds.), Elsevier, New York, pp. 123–156.

    Google Scholar 

  • Nagy G., Gerhardt G. A., Oke A. F., Rice M. E., Adams R. N., Moore R. B., Szentirmay M. N., and Martin C. R. J. (1985) Ion exchange and transport of neurotransmitters in Nafion films on conventional and microelectrode surfaces. J. Electroanal. Chem. Interfacial Electrochem. 188, 85–94.

    CAS  Google Scholar 

  • Near J. A., Bigelow J. C, and Wightman R. M. (1988) Comparison of uptake of dopamine in rat striatal chopped tissue and synaptosomes. J. Pharmacol. Exp. Ther. 245, 921–927.

    PubMed  CAS  Google Scholar 

  • Nicholson C. and Rice M. E. (1991) Diffusion of ions and transmitters in the brain cell microenvironment, in Volume Transmission in the Brain: Novel Mechanisms for Neural Transmission. (Fuxe K. and Agnati L. F., eds.), Raven, New York, pp. 279–294.

    Google Scholar 

  • Palij P., Bull D. R., Sheehan M. J., Millar J., Stamford J., Kruk Z. L., and Humphrey P. A. (1990) Presynaptic regulation of dopamine release in corpus striatum monitored in vitro in real time by fast cyclic voltammetry. Brain Res. 509, 172–174.

    PubMed  CAS  Google Scholar 

  • Palkovits M., Zaborszky L., Brownstein M. J., Fekete M. I. K., Herman J. P., and Kanyicska B. (1979) Distribution of norepinephrine and dopamine in cerebral cortical areas of the rat. Brain Res. Bull. 4, 593–601.

    PubMed  CAS  Google Scholar 

  • Parsons L. H. and Justice J. B. (1992) Extracellular concentration and in vivo recovery of dopamine in the nucleus accumbens using microdialysis. J. Neurochem. 58, 212–218.

    PubMed  CAS  Google Scholar 

  • Paxinos G. and Watson C. (1986) The Rat Brain in Stereotaxic Coordinates. Academic, New York.

    Google Scholar 

  • Pickel V. M., Beckley S. C, Joh T. K., and Reis B. J. (1981) Ultrastructural and immunochemical localization of tyrosine hydroxylase in the neostriatum. Brain Res. 225, 373–385.

    PubMed  CAS  Google Scholar 

  • Press W. H., Flannery B. P., Teukolsky S. A., and Fetterling W. T. (1989) Numerical Recipes in Pascal. Cambridge Llniversity Press, Cambridge, UK.

    Google Scholar 

  • Rice M. E. and Nicholson C. (1989) Measurement of nanomolar dopamine diffusion using low-noise perfluorinated ionomer coated carbon fiber microelectrodes and high-speed cyclic voltammetry. Anal. Chem. 61, 1805–1810.

    PubMed  CAS  Google Scholar 

  • Rice M. E. and Nicholson C. (1991) Diffusion characteristics and extracellular volume fraction during normoxia and hypoxia in slices of rat neostriatum. J. Neurophysiol. 65, 264–272.

    PubMed  CAS  Google Scholar 

  • Richfield E. K., Penney J. B., and Young A. B. (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30, 767–777.

    PubMed  CAS  Google Scholar 

  • Savasta M., Dubois A., and Scatton B. (1986) Autoradiographic localization of Dl dopamine receptors in the rat brain with [3H]SCH 23390. Brain Res. 375, 291–301.

    PubMed  CAS  Google Scholar 

  • Scatton B., Dubois A., Dubocovich M. L., Zahniser N. R., and Fage D. (1985) Quantitative autoradiography of 3H-nomifensine binding sites in rat brain. Life Sci. 36, 815–822.

    PubMed  CAS  Google Scholar 

  • Schenk J. O. and Bunney B. S. (1987) Quantitative interpretations of in vivo chronoamperometry, in Voltammetry in the Neurosciences (Justice J. ed.), Humana, Clifton, NJ, pp. 139–160.

    Google Scholar 

  • Sequela P., Watkins K. C., and Descarries L. (1988) Ultrastructural features of dopamine axon terminals in the anteromedial and suprarhinal cortex of adult rat. Brain Res. 442, 11–22.

    Google Scholar 

  • Sharp T., Zetterstrom T., and Ungerstedt U. (1986) An in vivo study of dopamine release and metabolism in rat brain regions using intracerebral dialysis. J. Neurochem. 47, 113–122.

    PubMed  CAS  Google Scholar 

  • Singer E. A. (1988) Transmitter release from brain slices elicited by single pulses: a powerful method to study presynaptic mechanisms. TINS 9, 274–276.

    CAS  Google Scholar 

  • Stamford J. A., Kruk Z. L., and Millar J. (1986a) Sub-second striatal dopamine release measured by in vivo voltammetry. Brain Res. 381, 351–355.

    PubMed  CAS  Google Scholar 

  • Stamford J. A., Kruk Z. L., and Millar J. (1986b) In vivo voltammetric characterization of low affinity striatal dopamine uptake: drug inhibition profile and relation to dopaminergic innervation density. Brain Res. 373, 85–91.

    PubMed  CAS  Google Scholar 

  • Stamford J. A., Kruk Z. L., Palij P., and Millar J. (1988a) Diffusion and uptake of dopamine in rat caudate and nucleus accumbens compared using fast cyclic voltammetry. Brain Res. 448, 381–385.

    PubMed  CAS  Google Scholar 

  • Stamford J. A., Kruk Z. L., and Millar J. (1988b) Stimulated limbic and striatal dopamine release measured by fast cyclic voltammetry: anatomical, electrochemical and pharmacological characterisation. Brain Res. 454, 282–288.

    PubMed  CAS  Google Scholar 

  • Starke K., Gothert M., and Kilbinger H. (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 69, 864–989.

    PubMed  CAS  Google Scholar 

  • Suaud-Chagny M. F., Ponec J., and Gonon F. (1991) Presynaptic auto-inhibition of the electrically evoked dopamine release studied in the rat olfactory tubercle by in vivo electrochemistry. Neuroscience 45, 641–652.

    PubMed  CAS  Google Scholar 

  • Talmaciu R. K., Hoffmann I. S., and Cubeddu L. X. (1986) Dopamine autoreceptors modulate dopamine release from the prefrontal cortex. J. Neurochem. 47, 865–870.

    PubMed  CAS  Google Scholar 

  • Tassin J. P., Cheramy A., Blanc G, Thierry A. M., and Glowinski J. (1976) Topographical distribution of dopaminergic innervation and of dopaminergic receptors in the rat striatum. I. Microestimation of [3H]dopamine uptake and dopamine content in microdiscs. Brain Res. 107, 291–301.

    PubMed  CAS  Google Scholar 

  • Ungerstedt U. (1971) Stenotaxic mapping of the monamine pathways in the rat brain. Acta Physiol. Scand. 367s, 1–48.

    Google Scholar 

  • Valenta B., Drobny H., and Singer E. A. (1988) Presynaptic autoinhibition of central noradrenaline release in vitro: operational characteristics and effects of drugs acting at alpha-2 adrenoceptors in the presence of uptake inhibition. J. Pharmacol. Exp. Ther. 245, 944–949.

    PubMed  CAS  Google Scholar 

  • Wathey J. C, Nass M. M., and Lester H. A. (1979) Numerical reconstruction of the quantal event at nicotinic synapses. Btophys. J. 27, 145–164.

    CAS  Google Scholar 

  • Wiedemann D. J., Kawagoe Kennedy R. T., Ciolkowski E. L., and Wightman R. M. (1991) Strategies for low detection limit measurements with cyclic voltammetry. Anal. Chem. 63, 2965–2970.

    PubMed  CAS  Google Scholar 

  • Wightman R. M. and Zimmerman J. B. (1990) Control of dopamine extracellular concentration in rat striatum by impulse flow and uptake. Brain Res. Rev. 15, 135–144.

    PubMed  CAS  Google Scholar 

  • Wightman R. M., Brown D. S., Kuhr W. G., and Wilson R. L. (1987) Molecular specificity of in vivo electrochemical measurements, in Voltammetry in the Neurosciences (Justice J. B., ed.), Humana, Clifton, NJ, pp. 103–138.

    Google Scholar 

  • Wightman R. M., Amatore C, Engstrom R. C, Hale P. D., Kristensen E. W., Kuhr W. G., and May L. J. (1988) Real-time characterization of dopamine overflow and uptake in the rat striatum. Neuroscience 25, 513–523.

    PubMed  CAS  Google Scholar 

  • Zigmond M. J., Abercrombie E. D., Berger T. W., Grace A. A., and Strieker E. M. (1990) Compensations after lesions of central dopaminergic neurons: some clinical and basic implications. TINS 13, 290–295.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press, Inc.

About this protocol

Cite this protocol

Garris, P.A., Mark Wightman, R. (1995). Regional Differences in Dopamine Release, Uptake, and Diffusion Measured by Fast-Scan Cyclic Voltammetry. In: Boulton, A.A., Baker, G.B., Adams, R.N. (eds) Voltammetric Methods in Brain Systems. Neuromethods, vol 27. Humana Press. https://doi.org/10.1385/0-89603-312-0:179

Download citation

  • DOI: https://doi.org/10.1385/0-89603-312-0:179

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-312-2

  • Online ISBN: 978-1-59259-632-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics