Advertisement

Measurement of the Time-Resolved Kinetics of Biogenic Amine Release and Transporter Activity by Rotating Disk Electrode Voltammetry In Vitro

  • Susan M. Meiergerd
  • James O. Schenk
Part of the Neuromethods book series (NM, volume 27)

Abstract

Chemical neurotransmission is generally thought of as the fundamental process underlying communications between neurons of the central and peripheral nervous systems. Studies of this process are made by a variety of approaches and from different research perspectives, such as those of the molecular, genetic, molecular biological, cellular, and behavioral sciences. Chemical neurotransmission and its effects are transient events that in some cases are transformed into responses on longer time scales providing a unique challenge to the neuroscientist. The kinetic time scale of neurotransmission and its effects range from milliseconds in the case of synaptic transmission to minutes, hours, days, or perhaps a life time in the case of learning and memory. As a result, the design of experiments to elucidate kinetic events related to neurotransmission and its consequences is a challenging problem with a variety of “starting” places, each with a unique set of conditions and problems. Perhaps, the initial fundamental goal in research in neurotransmission is to elucidate the chemical events that control the initiation, duration, and termination of synaptic chemical signaling.

Keywords

Rotate Disk Electrode Electroactive Species Strip Chart Recorder Pyrroloquinoline Quinone Pine Instrument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adachi D. K., Kalivas P. W., and Schenk J. O. (1990) Neurotensin binding to dopamine. J. Neurochem. 51, 1321–1328.CrossRefGoogle Scholar
  2. Adams R. N. (1969) Electrochemistry at Solid Electrodes, Marcel Dekker, New York.Google Scholar
  3. Adams R. N. and Marsden C. A. (1982) Electrochemical detection methods for monoamine measurements in vitro and in vivo, in Handbook in Psychopharmacology, vol. 15 (Iversen L. L., Iversen S. D., and Snyder S. H., eds.), Plenum, New York, pp. 1–74.Google Scholar
  4. Anderson P. K., Muller R. H., and Tobias C. W. (1989) The effect of suspended particles on mass transfer to a rotating disk. J. Electrochem. 136, 390–399.CrossRefGoogle Scholar
  5. Atwell D., Barbour B., and Szatkowski M. (1993) Non-vesicular release of neurotransmitter. Neuron 11, 401–407.CrossRefGoogle Scholar
  6. Berger P., Gawin F., and Kosten T. R. (1989) Treatment of cocaine abuse with mazindol. Lancet I, 283.CrossRefGoogle Scholar
  7. Booth R. F. and Clark J. B (1978) A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem. J. 176, 365–370.PubMedGoogle Scholar
  8. Bruckenstein S. and Miller B. (1977) Unraveling reactions with rotating electrodes. Acc. Chem. Res. 10, 54–61.CrossRefGoogle Scholar
  9. Capellos C. and Bielski B. H. J. (1972) Kinetic Systems: Mathematical Description of Chemical Kinetics in Solution, Wiley-Interscience, New York.Google Scholar
  10. Caprani A., Tamisier L., and de Ficquelmont-Loizos M. M. (1987) Novel tools for determining mechanically induced modifications of membrane structure: electrochemical and fluorescence methods. Bioelectrochem. Bioenerg. 17, 303–315.CrossRefGoogle Scholar
  11. Caprani A., de Ficquelmont-Loizos M. M., Tamisier L., and Peronneau P. (1988) Mass transfer in laminar flow at a rotating disk electrode in suspensions of inert particles II. Theoretical evaluations of experimental results. J. Electrochem. Soc. 135, 635–642.CrossRefGoogle Scholar
  12. Chait L. D., Uhlenhuth E. H., and Johanson C. E. (1987) Reinforcing and subjective effects of several anorectics in normal human volunteers. J. Pharmacol. Exp. Thera. 242, 777–783.Google Scholar
  13. de Ficquelmont-Loizos M. M., Tamisier L., and Caprani A. (1988) Mass transfer in laminar flow at a rotating disk electrode in suspensions of inert particles I. Experimental investigation on the influence of the electrode, the medium, and the particle. J. Electrochem. Soc. 135, 626–634.CrossRefGoogle Scholar
  14. Devés R. and Krupka R. M. (1980) Testing transport systems for competition between pairs of reversible inhibitors, inhibition of erythrocyte glucose transport by cytochalasin B and steroids. J. Biol. Chem. 255, 11,870–11,874.PubMedGoogle Scholar
  15. Deves R. and Krupka R. M. (1989) Inhibition kinetics of carrier systems. Meth. Enzymol. 171, 113–132.PubMedCrossRefGoogle Scholar
  16. Dryhurst G., Kadish K. M., Scheller F., and Renneberg R. (1982) Catecholamines, in Biological Electochemistry, vol. 1, Academic,New York, pp. 116–179.Google Scholar
  17. Fersht A. (1985) Enzyme Structure and Mechanism, 2nd ed., Freeman, New York.Google Scholar
  18. Fromm H. J. (1975) Initial Rate Enzyme Kinetics, Springer-Verlag, New York.Google Scholar
  19. Humphries K. and Dryhurst G. (1987) Electrochemical oxidation of 5hydroxytryptophan in acid solution. J. Pharmaceut. Sci. 76, 839–846.CrossRefGoogle Scholar
  20. Horn A. S. (1979) Characteristics of DA uptake, in The Neurobiology of Dopamine (Horn A. S., Korf J., and Westernick B. H. C, eds.), Academic, London, pp. 217–235.Google Scholar
  21. Justice J. B. (ed.) (1987) Voltammetry in the Neurosciences: Principles, Methods, and Applications. Humana, Clifton, NJ.Google Scholar
  22. Malachesky P. A., Marcoux L. S., and Adams R. (1966) Homogeneous chemical kinetics with the rotating disk electrode. J. Phys. Chem. 70, 4068–4070.CrossRefGoogle Scholar
  23. Marsden C. A. (ed.) (1984) Measurement of Neurotransmitter Release In Vivo. Wiley, Chichester, England.Google Scholar
  24. McElvain J. S. (1992) In vitro studies of the kinetics of endogenous dopamine release and reuptake into rat striatal suspensions using rotating disk electrode voltammetry. Doctoral Dissertation, Washington State University, Pullman, WA.Google Scholar
  25. McElvain J. S. and Schenk J. O. (1992a) Blockade of dopamine autoreceptors by haloperidol and the apparent dynamics of potassium-stimulated endogenous release of dopamine from and reuptake into striatal suspensions in the rat. Neuropharmacology 31, 649–659.PubMedCrossRefGoogle Scholar
  26. McElvain J. S. and Schenk J. O. (1992b) A multisubstrate mechanism of striatal dopamine uptake and its inhibition by cocaine. Biochem. Pharmacol. 43, 2189–2199.PubMedCrossRefGoogle Scholar
  27. Meiergerd S. M. and Schenk J. O. (1993) The functioning DA transporter, relationships between interactions with substrate and two structurally dissimilar inhibitors, cocaine and mazindol. Soc. Neurosci. Abstr. 19, 745.Google Scholar
  28. Meiergerd S. M. and Schenk J. O. (1994a) Striatal transporter for dopamine: catechol structure activity studies and susceptibility to chemical modification. J. Neurochem. 62, 998–1008.PubMedCrossRefGoogle Scholar
  29. Meiergerd S. M. and Schenk J. O (1994b) Kinetic evaluation of the commonality between the site(s) of action of cocaine and some other structurally similar and dissimilar inhibitors of the striatal transporter for dopamine. J. Neurochem. 63, 1683–1692.PubMedCrossRefGoogle Scholar
  30. Meiergerd S. M., Hooks S., and Schenk J. O. (1994a) The striatal transporter for dopamine in the rat may be kinetically up-regulated following three weeks of withdrawal from cocaine self-administration. J. Neurochem. 63, 1277–1281.PubMedCrossRefGoogle Scholar
  31. Meiergerd S. M., McElvam J. S., and Schenk J. O. (1994b) The effects of cocaine and repeated cocaine followed by withdrawal: alterations of dopaminergic transporter turnover with no changes in kinetics of substrate recognition. Biochem. Pharmacol. 47, 1627–1634.PubMedCrossRefGoogle Scholar
  32. Meiergerd S. M., Patterson T. A., and Schenk J. O. (1993) D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J. Neurochem. 61, 764–767.PubMedCrossRefGoogle Scholar
  33. Miller B., Bellavance M. I., and Bruckenstein S. (1972) Feasibility and applications of programmed speed control at rotating ring disk electrodes. Analyt. Chem. 44, 1983–1992.CrossRefGoogle Scholar
  34. Patterson T. A. and Schenk J. O. (1991) Effects of acute and chronic systemic administration of some typical antipsychotic drugs on turnover of dopamine and potassium ion-induced release of dopamine in the striatum of the rat in vivo. Neuropharmacology 30, 943–952.PubMedCrossRefGoogle Scholar
  35. Ritz M. C, Lamb R. T., Goldberg S. R., and Kuhar M. J. (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237, 1219–1223.PubMedCrossRefGoogle Scholar
  36. Schenk J. O., Morocco M. T., and Ziemba V. A. (1991) Interactions between the argninyl moieties of neurotensm and the catechol protons of dopamine. J. Neurochem. 57, 1787–1795.PubMedCrossRefGoogle Scholar
  37. Schenk J. O., Patterson T. A., and McElvain J. S. (1990) Rotating disk voltammetric measurements in neurobiology and neuropharmacology. Trends Anal. Chem. 9, 325–330.CrossRefGoogle Scholar
  38. Schenk J. O., Miller E., Gaddis R., and Adams R. N. (1982) Homeostatic control of ascorbate concentration in CNS extracellular fluid. Brian Res. 253, 353–356.CrossRefGoogle Scholar
  39. Stein W. D. (1986) Transport and Diffusion Across Cell Membranes. Academic, San Diego, CA.Google Scholar
  40. Stem W. D. (1986) Channels, Carriers, and Pumps: An Introduction to Membrane Transport. Academic, San Diego, CA.Google Scholar
  41. Wilkinson L. (1990) SYSTAT: The System for Statistics. SYSTAT Inc., Evanston, IL.Google Scholar
  42. Wolf M. E. and Roth R. H. (1987) Dopamine autoreceptors, in Dopamine Receptors (Creese I. and Fraser C. M., eds.), Liss, New York, pp. 45–96.Google Scholar

Copyright information

© Humana Press, Inc. 1995

Authors and Affiliations

  • Susan M. Meiergerd
    • 1
  • James O. Schenk
    • 2
  1. 1.Department of ChemistryWashington State UniversityPullman
  2. 2.Departments of Chemistry, Biochemistry, and Biophysics, and Programs in Pharmacology/Toxicology and NeuroscienceWashington State UniversityPullman

Personalised recommendations