Advertisement

Xenopus Oocyte Microinjection and Ion-Channel Expression

  • T. G. Smart
  • B. J. Krishek
Part of the Neuromethods book series (NM, volume 26)

Abstract

It is now over 20 years since the seminal studies by John Gurdon and colleagues established that Xenopus laevis oocytes, when injected with messenger RNA (mRNA), were able after a period of incubation to translate the mRNA and appropriately synthesize the relevant protein (Gurdon et al., 1971; Gurdon 1974). In this study, rabbit reticulocyte 9S mRNA was injected and the oocytes produced globins. This important observation led to an amazing variety of proteins being expressed in Xenopus oocytes following injection with mRNAs extracted from different sources, including, for example, viral (adenovirus, mouse mammary tumor virus) and plant mRNAs (barley and maize), and also invertebrate (locust muscle, honey bee), and vertebrate tissue mRNAs (cat skeletal muscle, mouse kidney, rat spleen, Torpedo electric organ; see Lane, 1983; Colman, 1984; Soreq, 1985 for reviews). The value of the Xenopus oocyte for in vitro translation studies is now recognized by the oocyte’s ability to correctly assemble proteins composed of individual subunits and also to ensure the appropriate posttranslational processing of the protein, i.e., insertion into the cell membrane or secretion of the protein product (Lane, 1983; Soreq, 1985).

Keywords

Xenopus Oocyte Vitelline Membrane Oocyte Membrane Yolk Platelet Frog Ringer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akaike N., Inoue M., and Krishtal O. A. (1986) ‘Concentration-clamp’ study of γ-aminobutyric-acid-induced chloride current kinetics in frog sensory neurones. J. Physiol. (Lond.) 379, 171–185.Google Scholar
  2. Arvanov V. L. and Usherwood P. N. R. (1991) Concentration jump studies of intracellularly dialysed Xenopus oocytes show desensitization of kainate receptors. Neurosci. Left. 129, 201–204.CrossRefGoogle Scholar
  3. Atkinson A. E., Bermudez I., Darlison M. G., Barnard E. A., Earley F. G. P., Possee R. D., Beadle D. J., and King L. A. (1992) Assembly of functional GABA, receptors in insect cells using baculovirus expression vectors. Neuroreport 3, 597–600.CrossRefPubMedGoogle Scholar
  4. Barish M. E. (1983) A transient calcium-dependent chloride current in the immature Xenopus oocyte. J. Physiol. (Lond.) 342, 309–325.Google Scholar
  5. Barnard E. A., Miledi R., and Sumikawa K. (1982) Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. Roy Soc. Lond. B 215, 241–246.CrossRefGoogle Scholar
  6. Barthel F., Boutillier A. L., Giraud P., Demeneix B. A., Behr J. P., and Loeffler J. P. (1992) Gene regulation analysis by lipopolyamine-mediated DNA transfer in primary neurons, in Methods in Neuroscience, vol. 9 (Conn P. M., ed.), Academic, San Diego, pp. 292–312.Google Scholar
  7. Bertrand D., Cooper E., Valera S., Runger D., and Ballivet M. (1991) Electrophysiology of neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes following nuclear injection of genes or cDNAs. Meth. Neurosci. 4, 174–193.Google Scholar
  8. Brown D. D. and Gurdon J. B. (1977) High-fidelity transcription of 5s DNA injected into Xenopus oocytes. Proc. Natl. Acad. Sci. USA 5, 2064–2068.CrossRefGoogle Scholar
  9. Buckley N. J., Hulme E. C., and Birdsall N. J. M. (1990) Use of clonal cell lmes in the analysis of neurotransmitter receptor mechanisms and function. Biochim. Biophys. Acta. 1055, 43–53.CrossRefPubMedGoogle Scholar
  10. Burmeister M. and Soreq H. (1984) Production and analysis of radioactivity labelled translation products in microinjected Xenopus oocytes, in Molecular Biology Approach to Neurosciences (Soreq H., ed.), Wiley, London, pp. 195–203.Google Scholar
  11. Capecchi M. R. (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22, 479–488.CrossRefPubMedGoogle Scholar
  12. Chen C. and Okayama H. (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol. CeII. Biol. 7, 2745–2752.Google Scholar
  13. Claudio T. (1992) Stable expression of heterologous multisubunit protein complexes established by calcium phosphate-or lipid-mediated cotransfection, in Methods in Enzymology, vol. 207 (Rudy B. and Iverson L. E., eds.), Academic, San Diego, pp. 391–408.Google Scholar
  14. Colman A. (1984) Translation of eukaryotic messenger RNA in Xenopus oocytes, in Transcription and Translation: A Practical Approach (Hames B. D. and Higgins S. J., eds.), IRL, Oxford, pp. 271–302.Google Scholar
  15. Colman A. and Drummond D. (1986) The stability and movement of mRNA in Xenopus oocytes and embryos. J. Embyol. Exp. Morphol. 97(Suppl.), 197–209.Google Scholar
  16. Contreras R., Cheroutre H., and Fiers W. (1981) A simple apparatus for injection of nanolitre quantities into Xenopus oocytes. Anal. Biochem. 113, 185–187.CrossRefPubMedGoogle Scholar
  17. Dascal N. (1987) The use of Xenopus oocytes for the study of ion channels. CRC Crit. Rev. Biochem. 22, 317–387.CrossRefPubMedGoogle Scholar
  18. Dumont J. N. (1972) Oogenesis in Xenopus laevis (Daudin), 1. Stages of oocyte development in laboratory maintained animals. J. Morphol. 136, 153–180.CrossRefPubMedGoogle Scholar
  19. Dumont J. N. and Brummett A. R. (1978) Oogenesls in Xenopus laevis (Daudin). Relationships between developing oocytes and their investing follicular tissues. J Morphol. 155, 73–98.CrossRefPubMedGoogle Scholar
  20. Frech G, C., VanDongen A. M. J., Schuster G., Brown A. M., and Joho R. H. (1989) A novel potassium channel with delayed rectifier properties isolated from rat brain by expression cloning. Nature (Lond.) 340, 642–645.CrossRefGoogle Scholar
  21. Frech G. and Joho R. H. (1992) Isolation of ion channel genes by expression cloning in Xenopus oocytes, in Methods in Enzymology, vol. 207 (Rudy P. and Iverson L. E., eds.), Academic, San Dlego, pp. 592–604.Google Scholar
  22. Fulita N., Nelson N., Fox T. D., Claudio T., Lindstrom J., Riezman H., and Hess G. P. (1986) Biosynthesis of the Torpedo californica acetylcholine receptor a subunit in yeast. Science 231, 1284–1289.CrossRefGoogle Scholar
  23. Geller A. I., During M. J., and Neve R. L. (1991) Molecular analysis of neuronal physiology by gene transfer into neurons with herpes simplex virus vectors. Trends Neurosci. 14, 428–432.CrossRefPubMedGoogle Scholar
  24. Goldin A. L. (1992) Maintenance of Xenopus laevis and oocyte injection, in Methods in Enzymology, vol. 207 (Rudy B. and Iverson L. E., eds.), Academic, San Diego, pp. 266–279.Google Scholar
  25. Gundersen Miledi R., and Parker I. (1984) Messenger RNA from human brain induces drug-and voltage-operated channels in Xenopus oocytes. Nature (Lond.) 308, 421–424.CrossRefGoogle Scholar
  26. Gurdon J. B. (1974) The Control of Gene Expression in Animal Development. Harvard University Press, Cambridge, MA.Google Scholar
  27. Gurdon J. B., Lane D. C., Woodland H. R., and Marbaix G. (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature (Lond.) 233, 177–182.CrossRefGoogle Scholar
  28. Hamill O. P., Marty A., Neher E., Sakmann B., and Sigworth F. J. (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391, 85–100.CrossRefPubMedGoogle Scholar
  29. Hamill O. P., Lane J. W., and McBride D. W. Jr. (1992) Amiloride: a molecular probe for mechanosensitive channels. Trends Neurosci. 13, 373–376.Google Scholar
  30. Hitchcock M. J. M., Ginns E. I., and Macus-Sekura C. J, (1987) Microinjection into Xenopus oocytes: equipment, in Methods in Enzymology, vol. 152 (Berger S. L. and Kimmel A. R., eds.) Academic, San Diego, pp. 276–288.Google Scholar
  31. Hollmann M., O’Shea-Greenfield A., Rogers S. W., and Heinemann S. (1989) Cloning by functional expression of a member of the glutamate receptor family. Nature (Lond.) 342, 643–648.CrossRefGoogle Scholar
  32. Holt C. E., Garlick N., and Cornel E. (1990) Lipofection of cDNAs in the embryonic vertebrate central nervous system. Neuron 4, 203–214.CrossRefPubMedGoogle Scholar
  33. Houamed K. M., Bilbe G., Smart T. G., Constanti A., Brown D. A., Barnard E. A., and Richards B. M. (1984) Expression of functional GABA, glycine and glutamate receptors in Xenopus oocytes injected with rat brain mRNA. Nature (Lond.) 310, 318–321.CrossRefGoogle Scholar
  34. Ikeda S. R., Soler F., Zuhlke R. D., Joho R. H., and Lewis D. L. (1992) Heterologous expression of the human potassium channel Kv2.1 in clonal mammalian cells by direct cytoplasmic microinjection of cRNA. Pflügers Arch. 422, 201–203.CrossRefPubMedGoogle Scholar
  35. Inomata N., Ishihara T., and Akaike N. (1988) Effects of diuretics on GABA-gated chloride current in frog isolated sensory neurones. Br. J. Pharmacol. 93, 679–683.CrossRefPubMedGoogle Scholar
  36. Kamb A., Korenbrot J. I., and Kitajewski J. (1992) Expression of ion channels in cultured cells using baculovirus, in Methods in Enzymology, vol. 207 (Rudy B. and Iverson L. E., eds.) Academic, San Diego, pp. 423–431.Google Scholar
  37. Karschin A. (1993) Heterologous expression of the membrane proteins that control cellular excitability, in Comparative Molecular Neurobiology (Pichon Y., ed.), Birkhauser Verlag, Basel, pp. 31–47.CrossRefGoogle Scholar
  38. King K., Dohlman H. G., Thorner J., Caron M. G., and Lefkowitz R. J. (1990) Control of yeast mating signal transduction by a mammalian β2-adrenergic receptor and Gs α subunit. Science 250, 121–123.CrossRefPubMedGoogle Scholar
  39. Krafte D. S. and Lester H. A. (1989) Expression of functional sodium channels in stage II-III Xenopus oocytes. J. Neurosci. Meth. 26, 211–215.CrossRefGoogle Scholar
  40. Kressmann A., Clarkson S. G., Telford J. L., and Birnsteil M. L. (1977) Transcription of Xenopus tDNA1 met and sea urchin histone. DNA injected into the Xenopus oocyte nucleus. Cold Spring Harbor Symp. Biol. 42, 1077–1082.CrossRefGoogle Scholar
  41. Lane C. D. (1983) The fate of genes, messengers, and proteins introduced into Xenopus oocytes, in Current Topics in Developmental Biology, vol. 18, Academic, New York, pp. 89–116.Google Scholar
  42. Lane J. W., McBride D.W. Jr., and Hamill O. P. (1992) Structure-activity relations of amiloride and its analogues in blocking the mechanosensitive channel in Xenopus oocytes. Br.J. Pharmacol. 106, 283–286.CrossRefPubMedGoogle Scholar
  43. Lester H. A. (1988) Heterologous expression of excitability proteins: route to more specific drugs? Science 241, 1057–1063.CrossRefPubMedGoogle Scholar
  44. Lubbert H., Hoffman B. J., Snutch T. P., Van Dyke T., Levme A. I., Hartig P. R., Lester H. A., and Davidson N. (1987) cDNA cloning of a serotonin 5-HT1c receptor by electrophysiological assays of mRNA-injected Xenopus oocytes. Proc. Natl. Acad. Sci. USA 84, 4332–4336.CrossRefPubMedGoogle Scholar
  45. Madeja M., Mushoff U., and Speckmann E.-J. (1991) A concentration-clamp system allowing two-electrode voltage-clamp investigations in oocytes of Xenopus laevis. J. Neurosci. Meth. 38, 267–269.CrossRefGoogle Scholar
  46. Masu Y., Nakayama K., Tamaki H., Harada Y., Kuno M., and Nakanishi S. (1987) cDNA cloning of bovine substance-K receptor through oocyte expression system. Nature (Lond.) 329, 836–838.CrossRefGoogle Scholar
  47. Masu M., Tanabe Y., Tsuchida K., Shigemoto R., and Nakanishi S. (1991) Sequence and expression of a metabotropic glutamate receptor. Nature (Lond,) 349, 760–765.CrossRefGoogle Scholar
  48. Methfessel C., Witzemann V., Takahashi T., Mlshina M., Numa S., and Sakmann B. (1986) Patch-Clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflügers Arch. 407, 577–588.CrossRefPubMedGoogle Scholar
  49. Miledi R. (1982) A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc. Roy. Soc. Lond. B 215, 491–497.CrossRefGoogle Scholar
  50. Miledi R., Parker I., and Sumikawa K. (1982) Synthesis of chick brain GABA receptors by frog oocytes. Proc. Roy. Soc. Lond. B 216, 509–515.CrossRefGoogle Scholar
  51. Moriyoshi K., Masu M., Ishii T., Shigemoto R., Mizuno N., and Nakanishi S. (1991) Molecular cloning and characterisation of the rat NMDA receptor. Nature (Lond.) 354, 31–37.CrossRefGoogle Scholar
  52. Orlowski S. and Mir L. M. (1993) Cell permeabilization: a new tool for biochemical and pharmacological studies. Biochim. Biophys. Acta. 1154, 51–63.CrossRefPubMedGoogle Scholar
  53. Rungger D. and Turler H. (1978) DNAs of simian virus 40 and polyoma direct the synthesis of viral tumor antigens and capsid proteins in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 75, 6073–6077.CrossRefPubMedGoogle Scholar
  54. Shirasaki T., Harata N., Nakaye T., and Akaike N. (1991) Interaction of various non-steroidal anti-inflammatories and quinolone antinucrobials on GABA response in rat dissociated hippocampal pyramidal neurons. Brain Res. 562, 329–331.CrossRefPubMedGoogle Scholar
  55. Sigel E. (1990) Use of Xenopus oocytes for the functional expression of plasma membrane proteins. J. Membr. Biol. 117, 201–221.CrossRefPubMedGoogle Scholar
  56. Smart T. G., Constanti A., Bilbe G., Brown D. A., and Barnard E. A. (1983) Synthesis of functional chick brain GABA-benzodlazepine-barbi-turate /receptor complexes in mRNA-injected Xenopus oocytes. Neurosci. Lett. 40, 55–59.CrossRefPubMedGoogle Scholar
  57. Smart T. G., Houamed K. M., Van Renterghem C., and Constanti A. (1987) mRNA-directed synthesis and insertion of functional amino acid receptors in Xenopus laevis oocytes. Biochem. Soc. Trans. 15, 117–122.PubMedGoogle Scholar
  58. Soreq H. (1985) The biosynthesis of biologically active proteins in mRNA-microinjected Xenopus oocytes. CRC Crit. Rev. Biochem. 18, 199–238.CrossRefPubMedGoogle Scholar
  59. Snutch T. P. (1988) The use of Xenopus oocytes to probe synaptic communication. Trends Neurosci. 11, 250–256.CrossRefPubMedGoogle Scholar
  60. Strosberg A. D. and Marullo S. (1992) Functional expression of receptors in microorganisms. Trends Pharmacol. Sci. USA 13, 95–98.CrossRefGoogle Scholar
  61. Stuhmer W. (1992) Electrophysiological recording from Xenopus oocytes, in Methods in Enzymology, vol. 207 (Rudy B. and Iverson L. E., eds.), Academic, San Diego, CA, pp. 319–339.Google Scholar
  62. Sumikawa K., Houghton M., Emtage J. S., Richards B. M., and Barnard E. A. (1981) Active multisubunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes. Nature (Lond.) 292, 862–864.CrossRefGoogle Scholar
  63. Sumikawa K., Parker I., and Miledi R. (1986) Xenopus oocytes as a tool for molecular cloning of the genes coding for neurotransmitter receptors and voltage-operated channels. Fortschritte der Zoologie, Band 33: Membrane Control, Gustav Fischer Verlag, Stuttgart, pp. 127–139.Google Scholar
  64. Taglialatela L., Toro L., and Stefani E. (1992) Novel voltage clamp to record small, fast currents from ion channels expressed in Xenopus oocytes. Biophys, J. 61, 78–82.CrossRefGoogle Scholar
  65. Taglietti V. and Toselh M. (1988) A study of stretch-activated channels in the membrane of frog oocytes: interactions with Ca2+ ions. J. Physiol. (Lond.) 407, 311–328.Google Scholar
  66. Takumi T., Ohkubo H., and Nakanishi S. (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242, 1042–1045.CrossRefPubMedGoogle Scholar
  67. Tekle E., Astumian R. D., and Chock P.B. (1991) Electroporation by using bipolar oscillating electric field: an improved method for DNA transfection of NIH 3T3 cells. Proc. Natl. Acad. Sci. USA 88, 4230–4234.CrossRefPubMedGoogle Scholar
  68. Verhoeff-de Fremery R. and Griffin J. (1987) Anurans (frogs and toads), in The Care and Management of Laboratory Animals, 6th ed. (Poole T., ed.), pp. 773–783.Google Scholar
  69. White M. W. and Aylwin M. (1990) Niflumic and flufenamic acids are potent reversible blockers of Ca2+-activated Cl-channels in Xenopus oocytes. Mol. Pharmacol. 37, 720–724.PubMedGoogle Scholar
  70. Woodward R. M. and Miledi R. (1989) Effects of defolliculation on membrane current responses of Xenopus oocytes. J. Physiol. (Lond.) 416, 601–621.Google Scholar
  71. Yang X.-C. and Sachs F. (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolmium and calcium ions. Science 243, 1068–1071.CrossRefPubMedGoogle Scholar
  72. Yang X.-C. and Sachs F. (1990) Characterization of stretch-activated ion channels in Xenopus oocytes. J. Physiol. (Lond.) 431, 103–122.Google Scholar
  73. Yang X.-C., Karschin A., Labarca C., Elroy-Stein O., Moss Davidson N., and Lester H. A. (1991) Expression of ion channels and receptors in Xenopus oocytes using vaccinia virus. FASEB J. 5, 2209–2216.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1995

Authors and Affiliations

  • T. G. Smart
    • 1
  • B. J. Krishek
    • 1
  1. 1.Department of PharmacologyThe School of PharmacyLondonUK

Personalised recommendations