Skip to main content

Transformation of Candida maltosa by Electroporation

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 47))

Abstract

The genus Candida comprises a group of yeasts united by nothing more than the fact that none has a natural sexual cycle. If these yeasts do not form a natural grouping, they nonetheless contain a number of species of considerable scientific and practical interest. Candida albicans is an important opportunistic pathogen of humans, it is a dimorphic organism, and the transition from the yeast to the mycelial form is an essential prerequisite for the establishment of an infection. Commercially important species include Candida utilis and Candida maltosa, which have applications as food and feed organisms and can be used in the processing of a wide range of substrates, including, in the latter case, crude oil. Candida species are diploid or aneuploid in their genetic constitution and have proven to be difficult organisms to study in terms of their genetics and molecular biology. Traditional approaches to mutation and genetic mapping have provided very limited information, and only a few of the 166 species of Candida (1) have yielded to molecular genetic methods. Nevertheless, recombinant DNA technology represents the only efficient route to analyzing their genomes, and this requires an efficient DNA transformation method. Electroporation has become the preferred method for gene transfer owing to its ease and efficiency in comparison to alternative techniques. Moreover, electroporation permits the introduction of DNA into organisms that are refractory to other transformation techniques (2). However, experience with Saccharomyces cerevisiae has indicated that the electroporation conditions may need to be adapted for each strain used (36), and our findings with Candida maltosa support this view (7). We have found that optimal electroporation conditions show significant variation even between different mutants derived from a single strain, and thus, it is impossible to give a general transformation protocol for the extremely heterogeneous genus Candida. Therefore, in this chapter, we will focus on the hydrocarbon-utilizing yeast C. maltosa, a member of the Candida genus whose molecular genetics has advanced significantly of late (818).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Barnett, J. A, Payne, R. W., and Yarrow, D. (1990) Yeasts, Characteristics and Identification, 2nd ed. Cambridge University Press, Cambridge.

    Google Scholar 

  2. Ogata, T., Okumura, Y., Tadenuma, M., and Tamura, G. (1993) Improving transformation method for industrial yeasts: construction of ADH1-APT2 gene and using electroporation. J. Gen. Appl. Microbiol. 39, 285–294.

    Article  CAS  Google Scholar 

  3. Meilhoc, E., Masson, J. M., and Teissie, J. (1990) High efficiency transformation of intact yeast cells by electric field pulses. Bio/Technology 8, 223–227.

    Article  PubMed  CAS  Google Scholar 

  4. Grey, M. and Brendel, M. (1992) A ten-minute protocol for transforming Saccharomyces cerevisiae by electroporation. Curr. Genet. 22, 335,336.

    Article  PubMed  CAS  Google Scholar 

  5. Delorme, F. (1989) Transformation of Saccharomyces cerevisiae by electroporation. Appl. Environ. Microbiol. 55, 2242–2246.

    PubMed  CAS  Google Scholar 

  6. Becker, D. M. and Guarente, L. (1991) High-efficiency transformation of yeast by electroporation. Methods Enzymol. 194, 182–187.

    Article  PubMed  CAS  Google Scholar 

  7. Kasüske, A., Wedler, H., Schulze, S., and Becher, D. (1992) Efficient electropulse transformation of intact Candida maltosa cells by different homologous vector plasmids. Yeast 8, 691–697.

    Article  PubMed  Google Scholar 

  8. Takagi, M., Kawai, S., Chang, M. C., Shibuya, I., and Yano, K. (1986) Construction of a host-vector system in Candida maltosa by using an ARS site isolated from its genome. J. Bacteriol. 167, 551–555.

    PubMed  CAS  Google Scholar 

  9. Hikiji, T., Ohkuma, M., Takagi, M., and Yano, K. (1989) An improved host-vector system for Candida maltosa using a gene isolated from its genome that complements the his5 mutation of Saccharomyces cerevisiae. Curr. Genet. 16, 261–266.

    Article  PubMed  CAS  Google Scholar 

  10. Kawai, S., Hikiji, T., Murao, S., Takagi, M., and Yano, K. (1991) Isolation and sequencing of a gene, C-ADE1, and its use for a host-vector system in Candida maltosa with two genetic markers. Agric. Biol. Chem. 55, 59–65.

    PubMed  CAS  Google Scholar 

  11. Becher, D., Wedler, H., Schulze, H., Bode, R., Kasüske, A., and Samsonova, I. (1991) Correlation of biochemical blocks and genetic lesions in leucine auxotrophic strains of the imperfect yeast Candida maltosa. Mol. Gen. Genet. 227, 361–368.

    Article  PubMed  CAS  Google Scholar 

  12. Ohkuma, M., Tanimoto, T., Yano, K., and Takagi, M. (1991) CYP52 (Cytochrome P450alk) multigene family in Candida maltosa. Molecular cloning and nucleotide sequence of two tandemly arranged genes. DNA and Cell Biol. 10, 271–282.

    Article  CAS  Google Scholar 

  13. Ohkuma, M., Hikiji, T., Tanimoto, T., Schunck, W. H., Müller, H. G., Yano, K., and Takagi, M. (1991) Evidence that more than one gene encodes n.alkane-inducible cytochrome P450s in Candida maltosa, found by two step gene disruption. Agric. Biol. Chem. 55, 1757–1764.

    PubMed  CAS  Google Scholar 

  14. Sasnauskas, K., Jomantiene, R., Lebediene, E., Lebedys, J., Januska, A., and Janulaitis, A. (1992) Molecular cloning and analysis of autonomous replicating sequence of Candida maltosa. Yeast 8, 253–259.

    Article  PubMed  CAS  Google Scholar 

  15. Sasnauskas, K., Jomantiene, R., Januska, A., Lebediene, E., Lebedys, J., and Janulaitis, A. (1992) Cloning and analysis of a Candida maltosa gene which confers resistance to formaldehyde in Saccharomyces cerevisiae. Gene 122, 207–211.

    Article  PubMed  CAS  Google Scholar 

  16. Kamiryo, T., Sakasegawa, Y., and Tan, H. (1989) Expression and transport of Candida tropicalis peroxisomal acyl-coenzyme A oxidase in the yeast Candida maltosa. Agric. Biol. Chem. 53, 179–186.

    CAS  Google Scholar 

  17. Tanaka, H., Takagi, M., and Yano, K. (1987) Separation of chromosomal DNA molecules of Candida maltosa on agarose gels using the OFAGE technique. Agric. Biol. Chem. 51, 3161–3163.

    CAS  Google Scholar 

  18. Becher, D., Schulze, S., Kasüske, A., Schulze, H., Oliver, S. G., and Samsonova, I. A. (1994) Molecular analysis of a leu2 mutant of Candida maltosa demonstrates presence of multiple alleles. Curr. Genet. 26, 208–216.

    Article  PubMed  CAS  Google Scholar 

  19. Chang, M. C., Jung, H. K., Suzuki, T., and Takagi, M. (1984) Ploidy in the asporogenous yeast Candida maltosa. Isolation of its auxotrophic mutants and their cell fusion. J. Gen. Appl. Microbiol. 30, 489–497.

    Article  Google Scholar 

  20. Kawai, S., Hwang, C. W., Sugimoto, M., Takagi, M., and Yano, K. (1987) Subcloning and nucleotide sequence of an ARS site of Candida maltosa which also functions in Saccharomyces cerevisiae. Agric. Biol. Chem. 51, 1587–1591.

    CAS  Google Scholar 

  21. Umek, R. M., Linskens, M. H. K., and Kowalski, D. (1989) New beginnings in studies of eukaryotic DNA replication origins. Biochim. Biophys. Acta 1007, 1–14.

    PubMed  CAS  Google Scholar 

  22. Lederberg, J. and Lederberg, E. M. (1952) Replica plating and indirect selection of bacterial mutants. J. Bacteriol. 63, 399–406.

    PubMed  CAS  Google Scholar 

  23. Marcil, R. and Higgins, D. R. (1992) Direct transfer of plasmid DNA from yeast to Escherichia coli by electroporation. Nucleic Acids Res. 20, 917.

    Article  PubMed  CAS  Google Scholar 

  24. Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  PubMed  CAS  Google Scholar 

  25. EASYJECT (1992) User’s Manual. 2, 1–46.

    Google Scholar 

  26. Bartoletti, D. C., Harrison, G. I., and Weaver, J. C. (1989) The number of molecules taken up by electroporated cells: quantitative determination. FEBS Lett. 256, 4–10.

    Article  PubMed  CAS  Google Scholar 

  27. Danhash, N., Gardner, D. C. J., and Oliver, S. G. (1991) Heritable damage to yeast caused by transformation. Bio/technology 9, 179–182.

    Article  PubMed  CAS  Google Scholar 

  28. Higgins, D. R. and Strathern, J. N. (1991) Electroporation stimulated recombination in yeast. Yeast 7, 823–832.

    Article  PubMed  CAS  Google Scholar 

  29. Rohrer, T. L. and Picataggio, S. K. (1992) Targeted integrative transformation of Candida tropicalis by electroporation. Appl. Microbiol. Biotechnol. 36, 650–654.

    Article  PubMed  CAS  Google Scholar 

  30. Nutley, W. M, Brade, A. M., Gaillardin, C., Eitzen, G. A., Glover, J. R., Aitchinson, J. D., and Rachubinski, R. A. (1993) Rapid identification and characterization of peroxisomal assembly mutants in Yarrowia lipolytica. Yeast 9, 507–517.

    Article  Google Scholar 

  31. Russel, C., Jarvis, A., Yu, P., and Mawson, J. (1993) Optimization of an electroporation procedure for Kluyveromyces lactis transformation. Biotechnol. Tech. 7, 417–422.

    Article  Google Scholar 

  32. Sanchez, M., Iglesias, F. J., Santamaria, C., and Dominguez, A. (1993) Transformation of Kluyveromyces lactis by electroporation. Appl. Environ. Microbiol. 59, 2087–2092.

    PubMed  CAS  Google Scholar 

  33. Iborra, F. (1993) High efficiency transformation of Kluyveromyces marxianus by a replicative plasmid. Curr. Genet. 24, 181–183.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Becher, D., Oliver, S.G. (1995). Transformation of Candida maltosa by Electroporation. In: Nickoloff, J.A. (eds) Electroporation Protocols for Microorganisms. Methods in Molecular Biology™, vol 47. Humana Press. https://doi.org/10.1385/0-89603-310-4:291

Download citation

  • DOI: https://doi.org/10.1385/0-89603-310-4:291

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-310-8

  • Online ISBN: 978-1-59259-534-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics