Skip to main content

Electroporation of Schizosaccharomyces pombe

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 47))

Abstract

Many of the techniques that have been developed for the manipulation of the budding yeast Saccharomyces cerevisiae have now been adapted to be used on the alternative host, Schizosaccharomyces pombe. One particularly important technique is the introduction of exogenous DNA into the yeast cell. One of the earlier methods requires generating protoplasts with a cell-wall-degrading enzyme prior to the introduction of DNA, generally giving transformation efficiencies of 2–3 × 104 transformants/µg DNA (1). When combined with the cationic liposome-forming reagent Lipofectin, the protoplast method can generate transformation efficiencies of 7.0 × 105 transformants/µg DNA (2). Protocols for transforming intact yeast have been developed that involve treatment of cells with monovalent cations, polyethylene glycol (PEG), and a 25-min heat pulse (3,4). Although the transformation efficiencies by these methods are lower than those of the standard protoplast method, they are not as tedious or time-consuming. Electroporation, subjecting cells to a controlled electrical pulse, is a transformation technique that has recently gained popularity. The main advantage of electroporation is the ease and time required to generate transformants. In addition, because of its biophysical nature, electroporation works well with a wide variety of cell types (58). It has also been used to incorporate a number of different molecules into cells (912). The procedure for electroporation presented below was developed as an easier and less time-consuming alternative for transformation of S. pombe.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Beach, D. and Nurse, P. (1981) High frequency transformation of the fission yeast Schizosaccharomyces pombe. Nature 290, 140–142.

    Article  CAS  Google Scholar 

  2. Allshire, R. C. (1990) Introduction of large linear minichromosomes into Schizosaccharomyces pombe by an improved transformation procedure. Proc. Natl. Acad. Sci. USA 87, 4043–4047.

    Article  PubMed  CAS  Google Scholar 

  3. Ito, H., Fukuda, Y., Murata, K., and Kimura, A. (1983) Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163–168.

    PubMed  CAS  Google Scholar 

  4. Bröker, M. (1987) Transformation of intact Schizosaccharomyces pombe cells with plasmid DNA. BioTechniques 5, 516–518.

    Google Scholar 

  5. Neumann, E., Schaefer-Ridder, M., Wang, Y., and Hofschneider, P. H. (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1, 841–845.

    PubMed  CAS  Google Scholar 

  6. Fromm, M., Taylor, L. P., and Walbot, V. (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA 82, 5824–5828.

    Article  PubMed  CAS  Google Scholar 

  7. Gibson, W. C., White, J. C., Laird, P. W., and Borst, P. (1987) Stable introduction of exogenous DNA into Trypanosoma brucei. EMBO J. 6, 2457–2461.

    PubMed  CAS  Google Scholar 

  8. Dower, W. J., Miller, J. F., and Ragsdale, C. W. (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 16, 6127–6145.

    Article  PubMed  CAS  Google Scholar 

  9. Fromm, M., Callis, J., Taylor, L. P., and Walbot, V. (1987) Electroporation of DNA and RNA into plant protoplast. Methods Enzymol. 153, 351–367.

    Article  CAS  Google Scholar 

  10. Uno, I., Fukami, K., Kato, H., Takenawa, T., and Ishikawa, T. (1988) Essential role for phophatidylinositol 4,5-biphosphate in yeast cell proliferation. Nature 333, 188–190.

    Article  PubMed  CAS  Google Scholar 

  11. Weaver, I. C., Harrison, G. I., Bliss, J. G., Mourant, J. R., and Powell, K. T. (1988) Electroporation: high frequency of occurrence of a transient high-permeability state in erythrocytes and intact yeast. FEBS Lett. 229, 30–34.

    Article  PubMed  CAS  Google Scholar 

  12. Yamamoto, T., Moerschell, R. P., Wakem, L. P., Ferguson, D., and Sherman, F. (1992) Parameters affecting the frequencies of transformation and co-transformation with synthetic oligonucleotides in yeast. Yeast 8, 935–948.

    Article  PubMed  CAS  Google Scholar 

  13. Karube, I., Tamiya, E., and Matsuoka, H. (1985) Transformation of Saccharomyces cerevisiae spheroplast by high electrical pulse. FEBS Lett. 182, 90–94.

    Article  CAS  Google Scholar 

  14. Delorme, E. (1989) Transformation of Saccharomyces cerevisiae by electroporation. Appl. Environ. Microbiol. 55, 2242–2246.

    PubMed  CAS  Google Scholar 

  15. Okazaki, K., Okazaki, N., Kume, K., Jinno, S., Tanaka, K., and Okayama, H. (1990) High-frequency transformation method and library transducing vectors for cloning mammalian cDNAs by trans-complementation of Schizosaccharomyces pombe. Nucleic Acids Res. 18, 6485–6489.

    Article  PubMed  CAS  Google Scholar 

  16. Becker, D. M. and Guarente, L. (1991) High efficiency transformation of yeast by transformation. Methods Enzymol. 194, 182–187.

    Article  PubMed  CAS  Google Scholar 

  17. Lossen, R. and Lacroute, F. (1983) Plasmid carrying the yeast OMP decarboxylase structural and regulatory genes: transcription regulation in a foreign environment. Cell 32, 371–377.

    Article  Google Scholar 

  18. Prentice, H. L. (1991) High efficiency transformation of Schizosaccharomyces pombe by electroporation. Nucleic Acids Res. 20, 621.

    Article  Google Scholar 

  19. Hood, M. T. and Stachow, C. S. (1992) Influence of polyethylene glycol on the size of Schizosaccharomyces pombe electropores. Appl. Environ. Microbiol. 58, 1201–1206.

    PubMed  CAS  Google Scholar 

  20. Manivasakam, P. and Schiestl, R. H. (1993) High efficiency transformation of Saccharomyces cerevisiae by electroporation. Nucleic Acids Res. 21, 4414,4415.

    Article  PubMed  CAS  Google Scholar 

  21. Sánchez, M., Iglesias, F. J., Santamaria, C., and Domínguez, A. (1993) Transformation of Kluyveromyces lactis by electroporation. Appl. Environ. Microbiol. 59, 2087–2092.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Hood, M.T., Stachow, C.S. (1995). Electroporation of Schizosaccharomyces pombe . In: Nickoloff, J.A. (eds) Electroporation Protocols for Microorganisms. Methods in Molecular Biology™, vol 47. Humana Press. https://doi.org/10.1385/0-89603-310-4:273

Download citation

  • DOI: https://doi.org/10.1385/0-89603-310-4:273

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-310-8

  • Online ISBN: 978-1-59259-534-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics