Skip to main content

Protein Chemical Shifts

  • Protocol
Book cover Protein NMR Techniques

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 60))

Abstract

It has been clear since the first NMR spectra of proteins that chemical shifts contain a lot of information on protein structure. In denatured proteins, most nuclei resonate at frequencies similar to those observed in small peptides, and therefore show a considerable degree of overlap and a lack of spectral dispersion, whereas in folded proteins some signals are shifted markedly. The chemical shift range spanned by nuclei within the same covalent framework is enormous compared to the accuracy with which they can be measured; thus, 1Hα shifts for each amino acid span a range of approx 2 ppm around the average position, 13Cα approx 8 ppm, 13C′ (carbonyl carbons) approx 5 ppm, 15N about 20 ppm, and 19F about 15 ppm, whereas they can be measured to an accuracy of 0.05 ppm or better. However, it is only in the last few years that it has been possible to use the chemical shifts in a reliable way. This is partly because computers are now much faster, but mostly because it is only recently that large numbers of chemical shift assignments have become available, for proteins with known three-dimensional (3D) structure. As a result, it has been possible to compare calculations to experiment, and therefore to reach a deeper understanding of the origins of the chemical shift, and refine the equations used. Thus, as discussed herein, it is now possible not only to calculate chemical shifts from structures, but also to derive structural constraints from chemical shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szilágyi, L. (1995) Chemical shifts in proteins come of age. Progr. Nucl. Magn. Reson. Spectrosc. 27.

    Google Scholar 

  2. Williamson, M. P. and Asakura, T. (1993) Empirical comparisons of models for chemical-shift calculation in proteins. J. Magn. Reson. Ser. B 101, 63–71.

    Article  CAS  Google Scholar 

  3. Osapay, K. and Case, D. A. (1991) A new analysis of proton chemical shifts in proteins. J. Am. Chem. Soc. 113, 9436–9444.

    Article  CAS  Google Scholar 

  4. de Dios, A., Pearson, J. G., and Oldfield, E. (1993) Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260, 1491–1496.

    Article  PubMed  Google Scholar 

  5. Haigh, C. W. and Malhon, R. B. (1980) Ring current theories in nuclear magnetic resonance. Progr. Nucl. Magn. Reson. Spectrosc. 13, 303–344.

    Article  Google Scholar 

  6. Wuthrich, K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, p. 17, Wishart, D. S., Bigam, C. G., Holm, A., Hodges, R. S., and Sykes, B. D. (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. 1. Investigations of nearest-neighbor effects. J. Biomol. NMR 5, 67–81, Merutka, G., Dyson, H. J., and Wright, P. E. (1995) “Random coil” 1H chemical shifts obtained as a function of temperature and trifluoroethanol concentration for the peptide series GGXGG. J. Biomol. NMR 5, 14-24.

    Google Scholar 

  7. Osapay, K. and Case, D. A. (1994) Analysis of proton chemical shifts in regular secondary structure of proteins. J. Biomol. NMR 4, 215–230.

    Article  PubMed  CAS  Google Scholar 

  8. Braun, D., Wider, G., and Wuthrich, K. (1994) Sequence-corrected 15N “random coil” chemical shifts. J. Am. Chem. Soc. 116, 8466–8469.

    Article  CAS  Google Scholar 

  9. Wishart, D. S. and Sykes, B. D. (1994) Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363–392.

    Article  PubMed  CAS  Google Scholar 

  10. Williamson, M. P. (1990) Secondary-structure dependent chemical shifts in proteins. Biopolymers. 29, 1423–1431.

    Article  PubMed  CAS  Google Scholar 

  11. Spera, S. and Bax, A. (1991) Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J. Am. Chem. Soc. 113, 5490–5492.

    Article  CAS  Google Scholar 

  12. Wishart, D. S., Sykes, B. D., and Richards, F. M. (1992) The chemical shift index a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651.

    Article  PubMed  CAS  Google Scholar 

  13. Wishart, D. S. and Sykes, B. D. (1994) The 13C chemical-shift index. a simple method for the identification of protein secondary structure using 13C chemical-shift data. J. Biomol. NMR 4, 171–180.

    Article  PubMed  CAS  Google Scholar 

  14. Jimenez, M. A., Blanco, F. J., Rico, M., Santoro, J., Herranz, J., and Nieto, J. L. (1992) Periodic properties of protein conformational shifts in isolated protein helices: An experimental study. Eur. J. Biochem. 207, 39–49.

    Article  PubMed  CAS  Google Scholar 

  15. Zhou, N. E., Zhu, B.-Y., Sykes, B. D., and Hodges, R. S. (1992) Relationship between amide proton chemical shifts and hydrogen bonding in amphipathic α-helical peptides. J. Am. Chem. Soc. 114, 4320–4326.

    Article  CAS  Google Scholar 

  16. Le, H., Pearson, J. G., de Dios, A. C., and Oldfield, E. (1995) Protein structure refinement and prediction via NMR chemical shifts and quantum chemistry. J. Am. Chem. Soc. 117, 3800–3807.

    Article  CAS  Google Scholar 

  17. Kikuchi, J., Fujita, K., Williamson, M. P., and Asakura, T. (1994) Structure analysis of proteins by a combination of distance geometry calculation and 1H NMR chemical shift calculation. Kobunshi Ronbunshu 51, 409–413.

    CAS  Google Scholar 

  18. Feng, Y., Roder, H., and Englander, S. W. (1990) Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c. Biochemistry 29, 3494–3504.

    Article  PubMed  CAS  Google Scholar 

  19. Osapay, K., Theriault, Y., Wright, P. E., and Case, D. A. (1994) Solution structure of carbonmonoxy myoglobin determined from nuclear magnetic resonance distance and chemical shift constraints. J. Mol. Biol. 244, 183–197.

    Article  PubMed  CAS  Google Scholar 

  20. Williamson, M. P., Kikuchi, J., and Asakura, T. (1995) Application of 1H chemical shifts to measure the quality of protein structures. J. Mol. Biol. 247, 541–546.

    PubMed  CAS  Google Scholar 

  21. Grzesiek, S. and Bax, A. (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J. Biomol. NMR 3, 185–204.

    PubMed  CAS  Google Scholar 

  22. Williamson, M. P. and Asakura, T. (1992) The application of 1H NMR chemical shift calculations to diasterotopic groups in proteins. FEBS Letts. 302, 185–188.

    Article  CAS  Google Scholar 

  23. Asakura, T., Tomiya, T., Date, T., Demura, M., and Williamson, M. P. (1994) The contour plots of the conformation-dependent 13C NMR chemical shifts of proteins. Rep. Progr. Polym. Phys. Japan 37, 707,708.

    Google Scholar 

  24. Kraulis, P. (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950.

    Article  Google Scholar 

  25. Redfield, C. and Dobson, C. M. (1988) Sequential 1H NMR assignments and secondary structure of hen egg white lysozyme in solution. Biochemistry 27, 122–136.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Williamson, M.P., Asakura, T. (1997). Protein Chemical Shifts. In: Reid, D.G. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 60. Humana Press. https://doi.org/10.1385/0-89603-309-0:53

Download citation

  • DOI: https://doi.org/10.1385/0-89603-309-0:53

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-309-2

  • Online ISBN: 978-1-59259-546-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics