Skip to main content

Production and Characterization of Recombinant Proteins for NMR Structural Studies

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 60))

Abstract

The recent rapid development of multidimensional and multinuclear methodology in NMR has steadily extended the range of proteins whose three-dimensional structures can be fully described by this technique alone. We review here some of the expression and labeling strategies used to produce recombinant proteins, protein domains, and subdomains, for this purpose. In planning expression and isolation strategies for such materials, there are several basic requirements for the end product that must be taken into consideration at the outset:

  1. 1.

    Homogeneity: For NMR experiments, at least 95% of the polypeptide product should ideally be a single molecular entity. The significance of impurities depends on their origin and molecular weight. Ten percent of a l00-kDa impurity in a 15-kDa protein would usually be of little consequence because of low signal intensity. However, low-molecular weight impurities carried through purification schemes can often obscure regions of the spectrum even when present at low concentrations. Similarly, microheterogeneity in the amino acid sequence owing to processing at the chain termini or (less commonly) mutation or alternative splicing should be avoided if possible.

  2. 2.

    Solubility: Successful structural studies usually require samples of between 0.5 and 2.5 mM, so the protein must be soluble at these concentrations without aggregation. Even weak association processes can result in a significant loss of spectral information. Solubility can be manipulated within limits by formulation conditions (see Section 3.) but is the major reason (apart from the size of the protein itself) for re-engineering and fragmentation approaches.

  3. 3.

    Quantity. A full set of experiments to complete sequential assignments and acquisition of nOe datasets will usually require 1–5 µmol of pure protein.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Montelione, G. T., Wuthrich, K., Burgess, A. W., Nice, E. C., Wagner, G., Gibson, K. D., and Scheraga, H. (1992) Solution structure of murine epidermal growth factor determined by NMR spectroscopy and refined by energy minimization with restraints. Biochemistry 31, 236–249.

    Article  PubMed  CAS  Google Scholar 

  2. Skelton, N. J., Aspiras, F., Ogez, J., and Schakk, T. J. (1995) Proton NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biochemistry 34, 5329–5342.

    Article  PubMed  CAS  Google Scholar 

  3. Stockman, B. J., Euvrard, B. J., Kloosterman, D. A., Scahill, T. A., and Swenson, R. P. (1993) 1H and 15N resonance assignments and solution secondary structure of oxidised Desulphovibrio vulgaris flavodoxin determined by heteronuclear three-dimensional NMR spectroscopy. J. Biomol. NMR 3, 133–149.

    PubMed  CAS  Google Scholar 

  4. Redfield, C., Boyd, J., Smith, L. J., Smith, R. A. G., and Dobson, C. M. (1992) Loop mobility in a four-helix bundle protein: 15N NMR relaxation measurements on human interleukin-4. Biochemistry 31, 10,431–10,437.

    Article  PubMed  CAS  Google Scholar 

  5. Caffrey, M., Brutscher, B., Simorre, J., Fitch, J., Cusanovitch, M., and Marion, D. (1994) Assignment of 13C and 13CO resonances for Rhodobacter capsulatus ferrocytochrome c2 using double-resonance and triple-resonance NMR spectroscopy. Eur. J. Biochem. 221, 63–75.

    Article  PubMed  CAS  Google Scholar 

  6. Orehhov, V. Y., Perushin, K. V., and Arseniev, A. S. (1994) Backbone dynamics of (1–71) bacteriorhodopsin studied by two-dimensional proton-nitrogen-15 NMR spectroscopy. Eur. J. Biochem. 219, 887–896.

    Article  Google Scholar 

  7. Trautwein, K. and Benner, S. A. (1991) High-level expression of bovine pancreatic RNAseA, in Site-Directed Mutagenesis and Protein Engineering, Proceedings International Symposium, (EL-Gewely, M. R., ed.) Elsevier, Amsterdam, pp. 53–61.

    Google Scholar 

  8. Sweeney, P. J., Walker, J. M., Reid, D. G., and Elshourbagy, N. (1991) Purification of cloned trypanosomal calmodulin and preliminary NMR studies. J. Chromatogra. 539, 501–505.

    Article  CAS  Google Scholar 

  9. Serpersu, E. H., Shortle, D., and Mildvan, A. S. (1986) Kinetic and magnetic resonance studies of effects of genetic substitution of a Ca2+-liganding amino acid in Staphylococcal nuclease. Biochemistry 25, 68–77.

    Article  PubMed  CAS  Google Scholar 

  10. Meiering, E. M., Bycroft, M., Lubienski, M. J., and Fersht, A. R. (1993) Structure and dynamics of barnase complexed with 3′-GMP studied by NMR spectroscopy. Biochemistry 32, 10,975–10,987.

    Article  PubMed  CAS  Google Scholar 

  11. Zabriskie, D. W., Wareheim, D. A., and Polansky, M. J. (1987) Effects of fermentation feeding strategies prior to induction of expression of a recombinant malaria antigen in Escherichia coli. J. Indust. Microbiol. 2, 87–95.

    Article  CAS  Google Scholar 

  12. Dodd, I., Mossakowska, D. E., Camilleri, P., Haran, M., Hensley, C. P., Lawlor, E. J., McBay, D. L., Pindar, W., and Smith, R. A. G. (1995) Overexpression in E. coli, folding, purification and characterisation of the first three short concensus repeat modules of human complement receptor-type 1. Protein Purification 6, 727–736.

    Article  CAS  Google Scholar 

  13. Redfield, C., Smith, L. J., Boyd, J., Lawrence, G. M. P., Edwards, R. G., Smith, R. A. G., and Dobson, C. M. (1991) Secondary structure and topology of human IL4 in solution. Biochemistry 30, 11,029–11,035.

    Article  PubMed  CAS  Google Scholar 

  14. Fischer, B., Sumner, I., and Goodenough, P. (1995) Isolation, renaturation and formation of disulphide bonds of eukaryotic proteins expressed in E. coli as inclusion bodies. Biotechnol. Bioengineer. 41, 3–13.

    Article  Google Scholar 

  15. Powers, R., Garrett, D. S., March, C. J., Frieden, E. A., Gronenborn, A. M., and Clore, G. M. (1992) 1H, 15N, 13C and 13CO assignments of human interleukin-4 using three-dimensional double-and triple-resonance heteronuclear magnetic resonance spectroscopy. Biochemistry 31, 4334–4346.

    Article  PubMed  CAS  Google Scholar 

  16. Barlow, P. N., Baron, M., Norman, D. G., Day, A. J., Willis, A. C., Sim, R. B., and Campbell, I. D. (1991) Secondary structure of a complement control protein module by two-deimensional 1H-NMR. Biochemistry 30, 997–1004.

    Article  PubMed  CAS  Google Scholar 

  17. Barlow, P. N., Norman, D. G., Steinkasserer, A., Horne, T. J., Pearce, J. M., Driscoll, P. C., Sim, R. B., and Campbell, I. D. (1992) Solution structure of the fifth repeat of factor H—a second example of a complementary control protein module. Biochemistry 31, 3626–3634.

    Article  PubMed  CAS  Google Scholar 

  18. Barlow, P. N., Steinkasserer, A., Norman, D. G., Kieffer, B., Wiles, A. P., Sim, R. B., and Campbell, I. D. (1993) Solution structure of a pair of complement modules by nuclear magnetic resonance. J. Mol. Biol. 232, 268–284.

    Article  PubMed  CAS  Google Scholar 

  19. O’Reilly, D. R., Miller, L. K., and Lucknow, V. A. (1992) Baculovirus Expression Vectors A Laboratory Manual. IRL/Oxford University Press, Oxford, UK.

    Google Scholar 

  20. Richardson, C. D. (1995) Methods in Molecular Biology Baculovirus Expression Protocols, Humana Press, Totowa, NJ.

    Book  Google Scholar 

  21. Roth, M. G. (1994) Protein Expression in Animal Cells, Academic Press, NY.

    Google Scholar 

  22. Murray, E. J. (1991) Methods in Molecular Biology Gene Transfer and Expression Protocols, Humana Press, Totowa, NJ.

    Book  Google Scholar 

  23. Zang, M., Trautman, H., Gandor, C., Messi, F., Asselbergs, F., Leist, C., Fiechter, A., and Reiser, J. (1995) Production of recombinant proteins in Chinese hampster ovary cells using a protein-free cell culture medium. Biotechnology 13, 389–392.

    Article  PubMed  CAS  Google Scholar 

  24. Hansen, A. P., Petros, A. A. M., Mazar, A. P., Pederson, T. M., Rueter, A., and Fesik, S. W. (1992) A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells. Biochemistry 31, 12,713–12,718.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Humana Press Inc.

About this protocol

Cite this protocol

Mossakowska, D.E., Smith, R.A.G. (1997). Production and Characterization of Recombinant Proteins for NMR Structural Studies. In: Reid, D.G. (eds) Protein NMR Techniques. Methods in Molecular Biology™, vol 60. Humana Press. https://doi.org/10.1385/0-89603-309-0:325

Download citation

  • DOI: https://doi.org/10.1385/0-89603-309-0:325

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-309-2

  • Online ISBN: 978-1-59259-546-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics