Skip to main content

Pharmacology of Antisense Therapeutic Agents

Cancer and Inflamination

  • Protocol
Antisense Therapeutics

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 1))

Abstract

Antisense oligonucleotides represent a new paradigm for drug discovery that holds great promise to deliver potent and specific drugs with fewer undesired side effects. The antisense paradigm offers the opportunity to identify rapidly lead compounds based on knowledge of the biology of a disease process, and a relevant target gene sequence. With this information, the practitioner of antisense drug discovery can rapidly design, synthesize, and test a series of compounds in cell culture and determine if the target gene is specifically inhibited. A compound thus identified can then be tested in an animal model, either to determine whether targeted gene expression can be inhibited in various animal tissues or to determine if there is activity in an animal model of a human disease. The length of time and the resources required to identify a lead compound by the antisense paradigm is much less than by any other drug discovery method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cossum, P A., Sasmor, H, Dellinger, D, Truong, L, Cummins, L, Owens, S R, Markham, P M., Shea, J P., and Crooke, S (1993) Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats J Pharmacol Exp Ther 267, 1181–1190.

    PubMed  CAS  Google Scholar 

  2. Cossum, P A, Truong, L, Owens, S. R., Markham, P M, Shea, J P., and Crooke, S T (1994) Pharmacokinetics of a 14C-labeled phosphorothioate oligonucleotide, ISIS 2105, after intradermal administration to rats. J. Pharmacol Exp Ther 269, 89–94

    PubMed  CAS  Google Scholar 

  3. Agrawal, S, Temsamani, J, and Tang, J Y (1991) Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci USA 88, 7595–7599

    Article  PubMed  CAS  Google Scholar 

  4. Temsamani, J, Tang, J, Padmapriya, A., Kubert, M, and Agrawal, S (1993) Pharmacokinetics, biodistribution, and stability of capped oligodeoxynucleotide phosphorothioates in mice Antisense Res Dev 3, 277–284

    PubMed  CAS  Google Scholar 

  5. Sands, H, Gorey-Feret, L J, Cocuzza, A. J., Hobbs, F W, Chidester, D, and Trainor, G. L (1994) Biodistribution and metabolism of internally 3H-labeled oligonucleotides I Comparison of a phosphodiester and a phosphorothioate. Mol. Pharmacol 45, 932–943.

    PubMed  CAS  Google Scholar 

  6. SaiJo, Y, Perlaky, L, Wang, H, and Busch, H. (1994) Pharmacokinetics, tissue distribution, and stability of antisense oligodeoxynucleotide phosphorothioate ISIS 3466 in mice Oncol Res 6, 243–249

    PubMed  CAS  Google Scholar 

  7. Crooke, S T (1993) Therapeutic potential of oligonucleotides. Curr Opin lnvest Drugs 2, 1045–1048.

    Google Scholar 

  8. Crooke, S. T (1992) Therapeutic applications of oligonucleotides Annu Rev Pharmacol Toxicol 32, 329–376.

    Article  PubMed  CAS  Google Scholar 

  9. Calabretta, B. (1991) Inhibition of protooncogene expression by antisense oligodeoxynucleotides biological and therapeutic implications. Cancer Res 51, 4505–4510.

    PubMed  CAS  Google Scholar 

  10. Stein, C A., Tonkinson, J L, and Yakubov, L. (1991) Phosphorothioate oligodeoxynucleotides-antisense inhibitors of gene expression? Pharmacol Ther 52, 365–384

    Article  PubMed  CAS  Google Scholar 

  11. Mulligan, J F., Matteucci, M. D., and Martin, J. C. (1993) Current concepts in antisense drug design J Med Chem 36, 1923–1937.

    Article  Google Scholar 

  12. Stein, C A. and Cheng, Y.-C (1993) Antisense oligonucleotides as therapeutic agentsis the bulllet really magical? Science 261, 1004–1012

    Article  PubMed  CAS  Google Scholar 

  13. Whitesell, L., Rosolen, A., and Neckers, L. M. (1991) In vivo modulation of N-myc expression by continous perfusion with an antisense oligonucleotide Antisense Res Dev 1. 343–350.

    PubMed  CAS  Google Scholar 

  14. KitaJima, I, Shinmohara, T, Bilakovics, J, Brown, D A, Xu, X, and Nerenberg, M (1992) Ablation of transplanted HTLV-1 tax-transformed tumors in mace by antisense inhibition of NF-kB Science 258, 1792–1795

    Article  PubMed  CAS  Google Scholar 

  15. Skorski, T, Nieborowska-Skorska, M, Nicolaides, N. C., Szczylik, C, Iversen, P, Iozzo, R V, Zon, G, and Calabretta, B (1994) Suppression of Philadelphia leukemia cell growth in mice by BCR-ABL antisense oligodeoxynucleotide Proc Natl Acad Sci USA 91, 4504–4508

    Article  PubMed  CAS  Google Scholar 

  16. Ratajczak, M Z, Kant, J A, Luger, S M., Huiya, N., Zhang, J., Zon, G, and Gewirtz, A M (1992) In vivo treatment of human leukemia in a scid mouse model with c-myb antisense oligodeoxynucleotides. Proc Natl Acad Sci USA 89, 11,823–l1,827.

    Article  PubMed  CAS  Google Scholar 

  17. Hijiya, N, Zhang, J, RataJczak, M Z, Kant, J A, DeRiel, K, Herlyn, M, Zon, G, and Gewirtz, A M (1994) Biologic and therapeutic significance of MYB expression in human melanoma Proc. Natl Acad Sci USA 91, 4499–4503.

    Article  PubMed  CAS  Google Scholar 

  18. McCormick, F (1989) ras GTPase activating protein* signal transmitter and slgnal terminator Cell 56, 5–8

    Article  PubMed  CAS  Google Scholar 

  19. Hall, A. (1990) The cellular functions of small GTP-binding proteins Science 249, 635–649.

    Article  PubMed  CAS  Google Scholar 

  20. Bokoch, G M. and Der, C J. (1993) Emerging concepts in the Ras superfamily of GTP-binding proteins FASEB J 7, 750–759

    PubMed  CAS  Google Scholar 

  21. Daum, G, Eisenmann-Tappe, I, Fries, H-W., Troppmair, J., and Rapp, U R (1994) The ins and outs of Raf kinases TZBS 19, 474–480

    CAS  Google Scholar 

  22. Bishop, J M (1987) The molecular genetics of cancer Science 235, 305–306

    Article  PubMed  CAS  Google Scholar 

  23. Bos, J. L (1989) ras Oncogenes in human cancer a review. Cancer Res 49, 4682–4689

    PubMed  CAS  Google Scholar 

  24. Vogelstein, B., Fearon, E R., Hamilton, S R., Kein, S E., Pressinger, A C, Leppert, M, Nakamura, Y, White, R., Smits, A, and Bos, J. L. (1988) Genetic alterations during colorectal tumor development N Engl J Med 319, 525–532

    Article  PubMed  CAS  Google Scholar 

  25. Lemoine, N R., Mayall, E S, Wyllie, F. S, Williams, E. D, Goyns, M., Stringer, B, and Wynford-Thomas, D (1989) High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis Oncogene 4, 159–164

    PubMed  CAS  Google Scholar 

  26. Reddy, E P (1983) Nucleotide sequence analysis of the T24 human bladder carcinoma oncogene Nature 220, 1061–1063.

    CAS  Google Scholar 

  27. Bos, J. L, Verlaan-de Vnes, M, Marshall, C. J, Veeneman, G H., van Boom, J H, and van der Eb, A J (1986) A human gastric carcinoma contains a single mutated and an amplified normal allele of the Ki-ras oncogene. Nucleic Acids Res 14, 1209–1217

    Article  PubMed  CAS  Google Scholar 

  28. Monia, B. P, Lesnik, E. A., Gonzalez, C, Lima, W F, McGee, D., Guinosso, C, Kawasaki, A M., Cook, P D., and Freier, S M (1993) Evaluation of 2’modified oligonucleotides containing deoxy gaps as antisense inhibitors of gene expression. J Biol. Chem 268, 14,514–14,522.

    PubMed  CAS  Google Scholar 

  29. Dean, N M, McKay, R., Condon, T. P, and Bennett, C F (1994) Inhibition of protein kinase C-a expression in human A549 cells by antisense oligonucleotides inhibits induction of intercellular adhesion molecule 1 (ICAM-1) mRNA by phorbol esters J Biol Chem 269, 16,416–16,424

    PubMed  CAS  Google Scholar 

  30. Monia, B. P, Johnston, J J, Ecker, D. J., Zounes, M. A., Lima, W F, and Freier, S M. (1992) Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J Biol Chem. 267, 19,954–19,962.

    PubMed  CAS  Google Scholar 

  31. Saison-Behmoaras, T, Tocque, B., Rey, I, Chassignol, M., Thuong, N. T, and Helene, C (1991) Short modified antisense oligonucleotides directed against Ha-Ras point mutation induce selective cleavage of the mRNA and inhibit T24 cells proliferation EMBO J 10, 111l–l118.

    Google Scholar 

  32. Chang, E H, Miller, P. S., Cushman, C., Devadas, K, Pirollo, K F, Ts’o, P O. P., and Yu, Z P (1991) Antisense inhibition of ras p21 expression that is sensitive to a point mutation Biochemistry 30, 8283–8286.

    Article  PubMed  CAS  Google Scholar 

  33. Georges, R. N, Mukhopadhyay, T, Zhang, Y., Yen, N., and Roth, J A (1993) Prevention of orthotopic human lung cancer growth by intratracheal instillation of a retroviral antisense K-ras construct Cancer Res 53, 1743–1746

    PubMed  CAS  Google Scholar 

  34. Schwab, G, Chavany, C., Duroux, I., Goubin, G., Lebeau, J, Hélène, C., and Saison-Behmoaras, T (1994) Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice. Proc Natl Acad Sci USA 91, 10,460–l0,464

    Article  PubMed  CAS  Google Scholar 

  35. Nishizuka, Y. (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C Science 258, 607–614.

    Article  PubMed  CAS  Google Scholar 

  36. Basu, A. (1993) The potential of protein kinase C as a target for anticancer treatment Pharmacol Ther 59, 257–280

    Article  PubMed  CAS  Google Scholar 

  37. Johnson, J. P., Stade, B G, Hupke, U., Holzman, B., and Riethmuller, G (1988) The melanoma progression-associated antigen P3 58 is identical to the intercellular adhesion molecule, IC AM-1 lmmunobiol 178, 275–284.

    CAS  Google Scholar 

  38. Natali, P., Nicotra, M R, Cavaliere, R., Bigotti, A., Romano, G, Temponi, M., and Ferrone, S (1990) Differential expression of intercellular adhesion molecule 1 in primary and metastatic melanoma lesions. Cancer Res. 50, 127l–l278

    Google Scholar 

  39. Johnson, J. P, Stade, B G., Holzmann, B., Schwable, W., and Riethmuller, G (1989) De novo expression of intercellular adhesion molecule-1 in melanoma correlates with increased risk of metastasis. Proc Natl. Acad Sci USA 86, 641–644

    Article  PubMed  CAS  Google Scholar 

  40. Miele, M. E., Bennett, C F., Miller, B. E., and Welch, D. R. (1994) Enhanced metastatic ability of TNF-a-treated malignant melanoma cells is reduced by intercellular adhesion molecule-1 (ICAM-1, CD54) antisense oligonucleotides. Exp Cell Res 214, 23l–241

    Article  Google Scholar 

  41. Cohen, J S (1991) Antisense oligodeoxynucleotides as antiviral agents. Antiviral Res 16, 121–133.

    Article  PubMed  CAS  Google Scholar 

  42. Dolnick, B. J. (1991) Antisense agents in cancer research and therapeutics. Cancer Invest 9, 185–194

    Article  PubMed  CAS  Google Scholar 

  43. Agrawal, S. (1992) Antisense oligonucleotides as antiviral agents TIBTECH 10, 152–158

    CAS  Google Scholar 

  44. Bennett, C. F. (1993) Antisense oligonucleotides in inflammation research and therapeutics, in Antisense Research and Applications (Crooke, S. T. and Lebleu, B, eds), CRC, Boca Raton, pp. 547–562.

    Google Scholar 

  45. Bennett, C F and Crooke, S T (1995) Oligonucleotide based inhibitors of cytokine expression and function, in Therapeutic Modulation of Cytokines (Henderson, B and Bodmer, M., eds), CRC, Boca Raton, in press

    Google Scholar 

  46. Springer, T. A (1990) Adhesion receptors of the immune system. Nature 346, 425–434

    Article  PubMed  CAS  Google Scholar 

  47. Butcher, E C. (1991) Leukocyte-endothelial cell recognition* three (or more) steps to specificity and diversity Cell 67, 1033–1036

    Article  PubMed  CAS  Google Scholar 

  48. Albelda, S M., Smith, C W., and Ward, P A. (1994) Adhesion molecules and inflammatory inJury FASEB J 8, 504–512

    PubMed  CAS  Google Scholar 

  49. Bevilacqua, M. P. (1993) Endothelial-leukocyte adhesion molecules Ann Rev Immunol 11, 767–804

    Article  CAS  Google Scholar 

  50. Rothlein, R, Dustin, M. L., Marlin, S D, and Springer, T A. (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J lmmunol 137, 1270–1274

    CAS  Google Scholar 

  51. Rothlein, R, CzaJkowski, M, O’Neill, M M., Marlin, S. D., Mainolfi, E., and Merluzzi, V. J (1988) Induction of intercellular adhesion molecule 1 on primary and continuous cell lines by pro-inflammatory cytokines J Immunol 141, 1665–1669

    PubMed  CAS  Google Scholar 

  52. Altmann, D M, Hogg, N, Trowsdale, J., and Wilkinson, D (1989) Cotransfection of ICAM-1 and HLA-DR reconstitutes human antigen-presenting cell function in mouse L cells Nature 338, 512–514.

    Article  PubMed  CAS  Google Scholar 

  53. Van Seventer, G A, Shimizu, Y, Horgan, K. J., and Shaw, S. (1990) The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells J Immunol 144, 4579–4586

    PubMed  Google Scholar 

  54. Rice, G. E, Munro, J M., and Bevilacqua, M. P. (1990) Inducible cell adhesion molecule 110 (INCAM-110) is an endothelial receptor for lymphocytes J Exp Med 171, 1369–1374

    Article  PubMed  CAS  Google Scholar 

  55. Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj, S, Chi-Rosso, G., and Lobb, R (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59, 1203–1211

    Article  PubMed  CAS  Google Scholar 

  56. Bevilacqua, M. P., Pober, J. S., Mendrick, D. L, Cotran, R. S, and Gimbrone, M A (1987) Identification of an inducible endothelial-leukocyte adhesion molecule Proc Natl Acad Sci USA 84, 9238–9242

    Article  PubMed  CAS  Google Scholar 

  57. Chiang, M-Y, Chan, H., Zounes, M. A, Freier, S M, Lima, W F, and Bennett, C. F. (1991) Antisense oligonucleotides inhibit intercellular adhesion molecule 1 expression by two distinct mechanisms J Biol Chem. 266, 18,162–l8,171

    PubMed  CAS  Google Scholar 

  58. Bennett, C F, Condon, T, Grimm, S., Chart, H, and Chiang, M-Y (1994) Inhibition of endothellal cell-leukocyte adhesion molecule expression with antisense oligonucleotides J Immunol 152, 3530–3540

    PubMed  CAS  Google Scholar 

  59. Nestle, F O., Mitra, R. S, Bennett, C. F., Chan, H, and Nickoloff, B. J (1994) Cationic lipid is not required for uptake and selective inhrbitory activity of ICAM-1 phosphorothtoate antisense oligonucleotides in keratinocytes J Invest Dermatol 103, 569–575

    Article  PubMed  CAS  Google Scholar 

  60. Siu, G., Hedrick, S M., and Brian, A A. (1989) Isolation of the murine intercellular adhesion molecule 1 (ICAM-1) Gene J Immunol 143, 3813–3820

    CAS  Google Scholar 

  61. Stepkowski, S. M, Tu, Y, Condon, T. P., and Bennett, C. F. (1994) Blocking of heart allografi rejection by intercellular adhesion molecule-1 antisense oligonucleotides alone or in combination with other immunosuppressive modalities. J Immunol 153, 5336–5346.

    PubMed  CAS  Google Scholar 

  62. Vinegar, R., Truax, J F, and Selph, J. L (1976) Quantitative studies of the pathway to acute carrageenan inflammation. Fed Proc 35, 2447–2456

    PubMed  CAS  Google Scholar 

  63. Cosimi, A B, Conti, D., Delmonico, F L, Preffer, F I., Wee, S-L., Rothlein, R., Faanes, R, and Colvin, R. B (1990) In VIVO effects of monoclonal antibody to ICAM-1 (CD54) in nonhuman primates with renal allografts J lmmunol 144, 4604–4612.

    CAS  Google Scholar 

  64. Isobe, M, Yagita, H, Okumura, K, and Ihara, A. (1992) Specific acceptance of cardiac allograft after treatment with antibodies to ICAM-1 and LFA-1 Science 255, 1125–1127

    Article  PubMed  CAS  Google Scholar 

  65. Haug, C. E., Colvin, R. B, Delnonico, F. L, Auchincloss, H, Tolkoff-Rubin, N, Preffer, F. I., Rothlein, R., Norris, S, Scharschmidt, L, and Cosimi, A B. (1993) A phase I trial of immunosuppression with anti-ICAM-1 (CD54) mAb in renal allograft recipients Transplantation 55, 766–773.

    Article  PubMed  CAS  Google Scholar 

  66. Okayasu, I, Hatakeyama, S, Yamada, M., Ohkusa, T, Inagaki, Y, and Nakaya, R. (1990) A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice Gastroenterology 98, 694–702

    PubMed  CAS  Google Scholar 

  67. Murthy, S. N S., Cooper, H. S, Shirn, H, Shah, R S., Ibrahim, S A, and Sedergran, D J. (1993) Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig Dis Sci 38, 1722–1734.

    Article  PubMed  CAS  Google Scholar 

  68. Wooley, P. H, Luthra, H S., Stuart, J. M, and David, C. S (1981) Type II col-lagen-induced arthritis in mice. Major histocompatability complex linkage and antibody correlates J Exp Med 154, 688–700.

    Article  PubMed  CAS  Google Scholar 

  69. Bliven, M. L, Wooley, P H., Pepys, M. B., and Otterness, I. G (1986) Murine type II collagen arthritis. association of an acute-phase response with clinical course Arthritis Rheum 29, 113l–l138

    Article  Google Scholar 

  70. Simons, M., Edelman, E R., DeKeyser, J.-L., Langer, R., and Rosenberg, R D. (1992) Antisense c-myb oligonucleotides inhibit arterial smooth muscle cell accumulation in vivo Nature 359, 67–70.

    Article  PubMed  CAS  Google Scholar 

  71. Morishita, R, Gibbons, G. H., Ellison, K. E., NakaJima, M., Zhang, L., Kaneda, Y., Ogihara, T, and Dzau, V J (1993) Single intraluminal delivery of antisense cdc2 kinase and proliferating-cell nuclear antigen oligonucleotides results in chronie inhibition of neointimal hyperplasia. Proc Natl Acad Scl USA 90, 8474–8478.

    Article  CAS  Google Scholar 

  72. Wagner, R W. (1994) Gene inhibition using antisense oligodeoxynucleotides. Nature 372, 333–335.

    Article  PubMed  CAS  Google Scholar 

  73. Chiasson, B. J, Hooper, M L., Murphy, P. R., and Robertson, H. A (1992) Antisense oligonucleotide eliminates in vivo expression of c-fos in mammalian brain. Eur J Pharmacol 227, 451–453.

    Article  PubMed  CAS  Google Scholar 

  74. Gillardon, F, Beck, H, Uhlmann, E, Herdegen, T., SandkÚhler, J., Peyman, A, and Zimmermann, M. (1994) Inhibition of c-fos protein expression in rat spinal cord by antisense oligodeoxynucleotide superfusion. Eur J. Neurosci 6, 880–884

    Article  PubMed  CAS  Google Scholar 

  75. Zhou, L-W, Zhang, S.-P, Qin, Z-H., and Weiss, B (1994) In vrvo administration of an oligodeoxynucleotide antisense to the D2 dopamine receptor messenger RNA inhibits D2 dopamine receptor-mediated behavior and the expression of D2 dopamine receptors in mouse strtatum. J Pharmacol Exp Ther 268, 1015–1023

    PubMed  CAS  Google Scholar 

  76. Akabayashi, A., Wahlestedt, C, Alexander, J T, and Leibowitz, S F. (1994) Specific inhibition of endogenous neuropeptide Y synthesis in arcuate nucleus by antisense oligonucleotides suppresses feeding behavior and insulin secretion Mel Brain Res 21, 55–61.

    Article  CAS  Google Scholar 

  77. Dean, N. M. and McKay, R (1994) Inhibition of protein kinase C-alpha expression in mice after systemic administration of phosphorothioate antisense oligodeoxynucleotides Proc. Natl Acad Sci USA 91, 11,762–l1,766

    Article  PubMed  CAS  Google Scholar 

  78. Burns, A R., Taket, F, and Doerschuk, C M (1994) Quantitation of ICAM-1 expression in mouse lung during pneumonia J Immunol 153, 3189–3198

    PubMed  CAS  Google Scholar 

  79. Quinlan, W M, Doyle, N A, Kumasaka, T, Wancewicz, E., Bennett, C. F., and Doerschuk, C. M(1994) The effect of ICAM-1 antisense ollgonucleottdes on the expression of ICAM-1 mRNA induced by E coli endotoxin Am Rev Respir Dis 150, A335

    Google Scholar 

  80. Kumasaka, T., Quinlan, W. M., Doyle, N A, Condon, T, Bennett, C. F., Sligh, J, Beaudet, A. L, and Doerschuk, C M. (1995) The role of ICAM-1 in E co1i endotoxin-induced pneumonia evaluated using ICAM-1 mutant mice or ICAM-1 antisense oligonucleotides. Am Rev Respir Dis 151, A456

    Google Scholar 

  81. Stein, C A. and Krieg, A. M(1994) Problems in interpretation of data derived from in vitro and in vivo use of antisense oligodeoxynucleotides Antisense Res Dev 4, 67–69

    PubMed  CAS  Google Scholar 

  82. Cook, P. D (1991) Medicinal chemtstry of antisense oligonucleotides-future opportunities Anti-Cancer Drug Design 6, 585–607

    PubMed  CAS  Google Scholar 

  83. Goodchild, J. (1992) Enhancement of ribozyme catalytic activity by a contiguous oligodeoxynucleotide (facilitator) and by 2’-0-methylation Nucleic Acids Res 20, 4607–4612

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Bennett, C.F., Dean, N., Ecker, D.J., Monia, B.P. (1996). Pharmacology of Antisense Therapeutic Agents. In: Agrawal, S. (eds) Antisense Therapeutics. Methods in Molecular Medicine, vol 1. Humana Press. https://doi.org/10.1385/0-89603-305-8:13

Download citation

  • DOI: https://doi.org/10.1385/0-89603-305-8:13

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-305-4

  • Online ISBN: 978-1-59259-585-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics