Skip to main content

Antisense Inhibition of Protein Synthesis and Function

Rabbit Retinal Protein

  • Protocol
Antisense Therapeutics

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 1))

Abstract

When considering the use of antisense technology for in vivo apphcatron, whether for therapeutic development or for the creation of animal models for human diseases, a major problem is that most extracellular compartments are constantly mixing with the blood, lymph, cerebrospinal fluid (CSF), and so forth, and thus constantly diluting the oligonucleotide. A possibly unique exception to this problem is the vitreous, a gelatinous fluid overlying the inner retinal surface. The vitreous is formed early in development and is in essence a relatively closed compartment with no active transport of fluids or ions. Forensic pathologists make use of this fact in determining the composition of electrolytes at the time of death by sampling the vitreal compartment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sjostrand, J. and Karlsson, J-O (1969) Axoplasmlc transport in the optic nerve and tract of the rabbit a biochemical and radioautographic study. J Neurochem 16, 833–844.

    Article  PubMed  CAS  Google Scholar 

  2. Lorenz, T. and Willard, M. (1978) Subcellular fractionation of intra-axonally transported polypeptides in the rabbit visual system Proc Natl Acad Set USA 75, 505–509.

    Article  CAS  Google Scholar 

  3. Bloom, G. S, Wagner, M. C, Pfister, K and Brady, S T. (1988) Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptrde Biochemistry 27, 3409–3416

    Article  PubMed  CAS  Google Scholar 

  4. Kuznetsov, S., Vaisberg, Y, Rothwell, S, Murphy, D., and Gel, V (1989) Isolation of a 45 kDa fragment from the kinesm heavy chain with enhanced ATPase and microtubule binding activities J Biol Chem 264, 589–595

    PubMed  CAS  Google Scholar 

  5. Vale, R. D, Reese, T. S., and Sheetz, M. P. (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility Cell 42, 39–50.

    Article  PubMed  CAS  Google Scholar 

  6. Hollenbeck, P. (1989) The distribution, abundance, and subcellular localization of kinesm. J. Cell Biol 108, 2335–2342

    Article  PubMed  CAS  Google Scholar 

  7. Hirokawa, N., Sato-Yoshitake, R., Kobayashi, N., Pfister, K. K, Bloom, G. S., and Brady, S. T. (1991) Kinesin associates with anterogradely transported membranous organelles in VIVO. J Cell Biol 114, 295–302

    Article  PubMed  CAS  Google Scholar 

  8. Ferreira, A, Nlclas, J., Vale, R. D, Banker, G, and Kosik, K S. (1992) Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides J Cell Biol 117, 595–606.

    Article  PubMed  CAS  Google Scholar 

  9. McEwen, B S and Grafstein, B (1968) Fast and slow components in axonal transport of protein J Cell Biol 38, 494–508

    Article  PubMed  CAS  Google Scholar 

  10. Morm, P. J, Liu N., Johnson, R J, Leeman, S. E, and Fme, R. E. (1991) Isolation and charactertzation of rapid transport vesicle subtypes from rabbit optic nerve. J Neurochem 56, 415–427.

    Article  Google Scholar 

  11. Morin, P J., Johnson, R. J, and Fine, R. E (1993) Kinesin is rapidly transported in the optic nerve as a membrane associated protein. Biochem Biophys Acta 1146, 275–281

    Article  PubMed  CAS  Google Scholar 

  12. Ingold, A, Cohn, S A, and Scholey, J M (1988) Inhibition of kinesm driven microtubule motility by monoclonal antibodies to kinesm heavy chains J Cell Biol 107, 2657–2667

    Article  PubMed  CAS  Google Scholar 

  13. Laemmli, U K (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685.

    Article  Google Scholar 

  14. Amaratunga, A, Morin, P J., Kosik, K. S, and Fine, R E. (1993) Inhibition of kinesin synthesis and rapid anterograde axonal transport in vivo by an antisense ohgonucleotide J Biol Chem 268, 17,427–l7,430.

    PubMed  CAS  Google Scholar 

  15. James, D. E, Lederman, L., and Pilch, P. F. (1987) Purification of insulm-dependent exocytic vesicles containing the glucose transporter J Biol. Chem 262, 11,817–11,824

    PubMed  CAS  Google Scholar 

  16. Aizawa, H., Sekine, Y, Takemura, R, Zhang, Z, Nangaku, M., and Hirokawa, N. (1992) Kinesm family in murine central nervous system J Cell Bio1 119, 1069–1076

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Amaratunga, A.P., Kosik, K.S., Rittenhouse, P.A., Leeman, S.E., Fine, R.E. (1996). Antisense Inhibition of Protein Synthesis and Function. In: Agrawal, S. (eds) Antisense Therapeutics. Methods in Molecular Medicine, vol 1. Humana Press. https://doi.org/10.1385/0-89603-305-8:109

Download citation

  • DOI: https://doi.org/10.1385/0-89603-305-8:109

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-305-4

  • Online ISBN: 978-1-59259-585-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics