Skip to main content

Electroporation of Rat Pituitary Cells

  • Protocol
  • 1174 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 48))

Abstract

Electroporation has become a useful tool for the introduction of biomolecules to a variety of cell types since the method was first described (1,2). This technique has also been used for important functional studies in the different GH cell strains: rat pituitary tumor cells that produce prolactin or growth hormone. In most cases, transient-expression experiments have been used to study cellular processes, such as rat growth hormone gene expression (3), prolactin promotor activity (47), and the transcription regulatory properties of hormones, such as thyroid hormones and retinoic acid (812).

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Neumann, E., and Rosenheck, K. (1972) Permeability changes induced by electric impulses in vesicular membranes. J. Membrane Biol. 10, 279–290.

    Article  CAS  Google Scholar 

  2. Potter, H. (1988) Electroporation in biology methods, applications, and instrumentation. Anal. Biochem. 174, 361–373.

    Article  PubMed  CAS  Google Scholar 

  3. Ye, Z.-S., Forman, B. M., Aranda, A., Pascual, A., Park, H.-Y., Casanova, J., and Samuels, H. H. (1988) Rat growth hormone gene expression. J. Biol. Chem. 263, 7821–7829.

    PubMed  CAS  Google Scholar 

  4. Keech, C. A., and Gutierrez-Hartmann, A. (1991) Insulin activation of rat prolactin promoter activity. Mol. Cell. Endocrinol. 78, 55–60.

    Article  PubMed  CAS  Google Scholar 

  5. Keech, C. A., and Gutierrez-Hartmann, A. (1989) Analysis of rat prolactin promoter sequences that mediate pituitary-specific and 3′,5′-cyclic adenosine monophosphate-regulated gene expression in vivo. Mol. Endocrinol. 3, 832–839.

    Article  PubMed  CAS  Google Scholar 

  6. Iverson, R. A., Day, K. H., d’Emden, M., Day, R. N., and Maurer, R. A. (1990) Clustered point mutation analysis of the rat prolactin promoter. Mol. Endocrinol. 4, 1564–1571.

    Article  PubMed  CAS  Google Scholar 

  7. Day, R. N., Walder, J. A., and Maurer, R. A. (1989) A protein kinase inhibitor gene reduces both basal and multihormone-stimulated prolactin gene transcription. J. Biol. Chem. 264, 431–436.

    PubMed  CAS  Google Scholar 

  8. Forman, B. M., Yang, C., Au, M., Casanova, J., Ghysdael, J., and Samuels, H. H. (1989) A domain containing leucine-zipper-like motifs mediate novel in vivo interactions between the thyroid hormone and retinoic acid receptors. Mol. Endocrinol. 3, 1610–1626.

    Article  PubMed  CAS  Google Scholar 

  9. Park, H.-Y., Davidson, D., Raaka, B. M., and Samuels, H. H. (1993) The herpes simplex virus thymidine kinase gene promoter contains a novel thyroid hormone response element. Mol. Endocrinol. 7, 319–330.

    Article  PubMed  CAS  Google Scholar 

  10. Flug, F., Copp, R. P., Casanova, J., Horowitz, Z. D., Janocko, L., Plotnick, M., and Samuels, H. H. (1987) Cis-acting elements of the rat growth hormone gene which mediate basal and regulated expression by thyroid hormone. J. Biol. Chem. 262, 6373–6382.

    PubMed  CAS  Google Scholar 

  11. Forman, B. M., Yang, C., Stanley, F., Casanova, J., and Samuels, H. H. (1988) c-erbA protooncogenes mediate thyroid hormone-dependent and independent regulation of the rat growth hormone and prolactin genes. Mol. Endocrinol. 2, 902–911.

    Article  PubMed  CAS  Google Scholar 

  12. Wood, W. M., Kao, M. Y., Gordon, D. F., and Ridgway, E. C. (1989) Thyroid hormone regulates the mouse thyrotropin β-subunit gene promoter in transfected primary thyrotropes. J. Biol. Chem. 264, 14,840–14,847.

    PubMed  CAS  Google Scholar 

  13. Paulssen, R. H., Paulssen, E. J., Alestrom, P., Gordeladze, J. O., and Gautvik, K. M. (1990) Specific antisense RNA inhibition of growth hormone production in differentiated rat pituitary tumor cells. Biochem. Biophys. Res. Commun. 171, 293–300.

    Article  PubMed  CAS  Google Scholar 

  14. Paulssen, R. H., Paulssen, E. J., Gautvik, K. M., and Gordeladze, J. O. (1992) The thyroliberin receptor interacts directly with a stimulatory guanine-nucleotide-binding protein in the activation of adenylyl cyclase in GH3 rat pituitary tumor cells. Eur. J. Biochem. 204, 413–418.

    Article  PubMed  CAS  Google Scholar 

  15. Paulssen, R. H., Paulssen, E. J., Alestrom, P., and Gautvik, K. M. (1990) Electroporation of rat pituitary (GH) cell lines: optimal parameters and effects on endogenous hormone production. Biochem. Biophys. Res. Commun. 171, 1029–1036.

    Article  PubMed  CAS  Google Scholar 

  16. Ham, R. G. (1963) An improved nutrient solution for diploid hamster and human cell lines. Expt. Cell Res. 29, 515–526.

    Article  CAS  Google Scholar 

  17. Naess, O., Haug, E., and Gautvik, K. M. (1980) Effects of glucocorticosteroids on prolactin and growth hormone production and characterization of the intracellular hormone receptors in rat pituitary tumor cells. Acta. Endocrinol. (Copenh.) 95, 319–327.

    CAS  Google Scholar 

  18. Bancroft, F. C., and Tashjian, A. H., Jr. (1971) Growth in suspension culture of rat pituitary cells which produce growth hormone and prolactin. Exp. Cell Res. 64, 125.

    Article  PubMed  CAS  Google Scholar 

  19. Tashjian, A. H., Jr. (1979) Clonal strains of hormone producing pituitary cells. Methods Enzymol. 58, 527–535.

    Article  PubMed  Google Scholar 

  20. Tashjian, A. H., Jr., Yasumura, Y., Levine, L., Sato, G. H., and Parker, M. L. (1968) Establishment of clonal strains of rat pituitary tumor cells that secrete growth hormone. Endocrinology 82, 342–352.

    Article  PubMed  CAS  Google Scholar 

  21. Takemoto, H., Yokoro, K., Furth, J., and Cohen, A. I. (1962) Adrenotropic activity of mammosomatotropic tumors in rats and mice. I. Biological aspects. Cancer Res. 22, 917–924.

    PubMed  CAS  Google Scholar 

  22. Tashjian, A. H., Jr., Bancroft, F. C., and Levine, L. (1970) Production of both prolactin and growth hormone by clonal strains of rat pituitary tumor cells. J. Cell Biol. 47, 61–70.

    Article  PubMed  CAS  Google Scholar 

  23. Bancroft, F. C. (1973) Measurement of growth hormone synthesis by rat pituitary cells in culture. Endocrinology 92, 1014–1021.

    Article  PubMed  CAS  Google Scholar 

  24. Gautvik, K. M., Bjøro, T., Sletholt, K., Østberg, B. C, Sand, O., Torjesen, P., Gordeladze, J. O., Iversen, J.-G., and Haug, E. (1988) Regulation of prolactin secretion and syntheses by peptide hormones in cultured rat pituitary cells, in Molecular Mechanisms in Secretion. Alfred Benzon Symposium 25 (Thorn, N. A., Treiman, M., and Pedersen, O. H., eds.), Munksgaard, Copenhagen, pp. 211–227.

    Google Scholar 

  25. Haug, E., Naess, O., and Gautvik, K. M. (1978) Receptors for 17β-estradiol in prolactin-sectreting rat pituitary cells. Mol. Cell Endocrinol. 12, 81–95.

    Article  PubMed  CAS  Google Scholar 

  26. Davis, J. R. E., Belayew, A., and Sheppard, M. C. (1988) Prolactin and growth hormone. Bailliere’s Clin. Endocrinol. Metab. 2, 797–834.

    Article  CAS  Google Scholar 

  27. Wehrenberg, W. B., Janowski, B. A., Piering, A. W., Culler, F., and Jones, K. L. (1990) Glucocorticoids: potent inhibitors and stimulators of growth hormone secretion. Endocrinology 126, 3200–3203.

    Article  PubMed  CAS  Google Scholar 

  28. Gautvik, K. M., and Kriz, M. (1976) Measurements of prolactin and growth hormone synthesis and secretion by rat pituitary cells in culture. Endocrinology 98, 344–351.

    Article  PubMed  CAS  Google Scholar 

  29. Andreason, G. L., and Evans, G. A. (1988) Introduction and expression of DNA molecules in eukaryotic cells by electroporation. Biotechniques 6, 650–660.

    PubMed  CAS  Google Scholar 

  30. Andreason, G. L., and Evans, G. A. (1989) Optimization of electroporation for transfection of mammalian cell lines. Anal. Biochem. 180, 269–275.

    Article  PubMed  CAS  Google Scholar 

  31. Cann, A. J., Koyanagi, Y., and Chen, I. S. Y. (1988) High efficiency transfection of primary human lymphocytes and studies of gene expression. Oncogene 3, 123–128.

    CAS  Google Scholar 

  32. Chu, G., Hayakawa, H., and Berg, P. (1987) Electroporation for the efficient transfection of mammalian cells with DNA. Nucleic Acids Res. 15, 1311–1326.

    Article  PubMed  CAS  Google Scholar 

  33. Iannuzzi, M. C., Weber, J. L., Yankaskas, J., Boucher, R., and Collins, F. S. (1988) The introduction of biologically active foreign genes into human respiratory epithelial cells using electroporation. Am. Rev. Respir. Dis. 138, 965–968.

    PubMed  CAS  Google Scholar 

  34. Toneguzzo, F., Hayday, A. C., and Keating, A. (1986) Electric field-mediated DNA transfer: transient and stable gene expression in human and mouse lymphoid cells. Mol. Cell. Biol. 6, 703–706.

    PubMed  CAS  Google Scholar 

  35. Lambert, C. A., Lefebvre, P. Y., Nusgens, B. V., and Lapiere, C. M. (1993) Modulation of expression of endogenous collagenase and collagen genes by electroporation: possible involvement of Ca2+ and protein kinase C. Biochem. J. 290, 135–138.

    PubMed  CAS  Google Scholar 

  36. Rech, E. L., Ochatt, S. J., Chand, P. K., Davey, P. R., and Mulligan, B. J. (1988) Electroporation increases DNA synthesis in cultured plant protoplasts. Biotechnology 6, 1091–1093.

    Article  CAS  Google Scholar 

  37. Wu, J., Kovacic-Milivojevic, B., Lapointe, M. C., Nakamura, K., and Gardner, D. G. (1991) Cis-active determinants of cardiac-specific expression in the human atrial natriuretic peptide gene. Mol. Endocrinol. 5, 1311–1322.

    Article  PubMed  CAS  Google Scholar 

  38. Jackson, S. M., Keech, C. A., Williamson, D. J., and Gutierrez-Hartmann, A. (1992) Interaction of basal positive and negative transcription elements controls repression of the proximal rat prolactin promoter in nonpituitary cells. Mol. Cell. Biol. 12, 2708–2719.

    PubMed  CAS  Google Scholar 

  39. Buonocore, V., Sgambati, O., De Rosa, M., Esposito, E., and Gambacorta, A. (1980) A constitutive β-galactosidase from the extreme thermoacidophile archaebacterium Caldariella acidophila: properties of the enzyme in the free state and immobilized whole cells. J. Appl. Biochem. 2, 390–397.

    CAS  Google Scholar 

  40. Jagota, S. K., Rao, M. V. R., and Dutta, S. M. (1981) Beta-galactosidase of streptococcus cremoris H. J. Food Sci. 46, 161–168.

    Article  CAS  Google Scholar 

  41. De Wet, J. R., Wood, K. V., De Luca, M., Helinski, D. R., and Subramani, S. (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7, 725–737.

    PubMed  Google Scholar 

  42. Maxwell, I. H., and Maxwell, F. (1988) Electroporation of mammalian cells with a firefly luciferase expression plasmid: kinetics of transient expression differ markedly among cell types. DNA 7, 557–562.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Paulssen, R.H., Paulssen, E.J., Gautvik, K.M. (1995). Electroporation of Rat Pituitary Cells. In: Nickoloff, J.A. (eds) Animal Cell Electroporation and Electrofusion Protocols. Methods in Molecular Biology, vol 48. Humana Press. https://doi.org/10.1385/0-89603-304-X:123

Download citation

  • DOI: https://doi.org/10.1385/0-89603-304-X:123

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-304-7

  • Online ISBN: 978-1-59259-535-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics