Advertisement

Spectrofluorometric Assay for Cell-Tissue Electrofusion

  • Richard Heller
Part of the Methods in Molecular Biology book series (MIMB, volume 48)

Abstract

Electrofusion is a process by which fusion between cell membranes can be induced by exposure to electrical fields (1,2). Many practical applications of electrofusion have been demonstrated, such as the formation of hybridomas (3, 4, 5, 6), the production of monoclonal antibodies (MAb) (7, 8, 9), studying membrane fusion mechanisms (10, 11, 12, 13, 14), and examining cytosolic events (15, 16, 17). In addition, liposome-cell fusion has been utilized for the introduction of material into cells (18). Cell-tissue electrofusion (CTE) represents another electrofusion area of interest. In this process, individual cells are incorporated into intact tissue (19). CTE has been performed in vivo and has been shown to be useful for the interspecies transfer of membrane-surface components (20).

Keywords

HL60 Cell Intact Tissue Rabbit Cornea Human HL60 Promyelocytic Leukemia Cell Human HL60 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bates, G., Saunders, J., and Sowers, A. E. (1987) Electrofusion: principles and applications, in Cell Fusion (Sowers, A. E., ed.), Plenum, New York, pp. 367–395.Google Scholar
  2. 2.
    Zimmermann, U., and Vienken, J. (1982) Electric field induced cell-to-cell fusion. J. Membrane Biol. 67, 165–182.CrossRefGoogle Scholar
  3. 3.
    Glassy, M. (1988) Creating hybridomas by electrofusion. Nature 333, 579,580.PubMedCrossRefGoogle Scholar
  4. 4.
    Glassy, M. C., and Pratt, M. (1989) Generation of human hybridomas by electrofusion, in Electroporation and Electrofusion in Cell Biology (Neumann, E., Sowers, A. E., and Jordan, C. A., eds.), Plenum, New York, pp. 271–282.Google Scholar
  5. 5.
    Hewish, D. R., and Werkmeister, J. A. (1989) The use of an electroporation apparatus for the production of murine hybridomas. J. Immunol. Methods 120, 285–289.PubMedCrossRefGoogle Scholar
  6. 6.
    White, J., Blackman, M., Bill, J., Kappler, J., Marrack, P., Gold, D. P., and Born, W. (1989) Two better cell lines for making hybridomas expressing specific T cell receptors. J. Immunol. 143, 1822–1825.PubMedGoogle Scholar
  7. 7.
    Foung, S. H. K., and Perkins, S. (1989) Electric field induced cell fusion and human monoclonal antibodies. J. Immunol. Methods 116, 117–122.PubMedCrossRefGoogle Scholar
  8. 8.
    Lo, M. M. S., Tsong, T. Y., Conrad, M. K., Strittmatter, S. M., Hester, L. D., and Snyder, S. H. (1984) Monoclonal antibody production by receptor mediated electrically induced cell fusion. Nature 310, 792–794.PubMedCrossRefGoogle Scholar
  9. 9.
    Lo, M. M. S. and Tsong, T. Y. (1989) Producing monoclonal antibodies by electrofusion, in Electroporation and Electrofusion in Cell Biology (Neumann, E., Sowers, A. E., and Jordan, C. A., eds.), Plenum, New York, pp 259–270.Google Scholar
  10. 10.
    Sowers, A. E. (1987) The long lived fusogenic state induced in erythrocyte ghosts by electric pulses is not laterally mobile. Biophys. J. 52, 1015–1020.PubMedCrossRefGoogle Scholar
  11. 11.
    Sowers, A. E. (1988) Fusion events and nonfusion contents mixing events induced in erythrocyte ghosts by an electric pulse. Biophys. J. 54, 619–626.PubMedCrossRefGoogle Scholar
  12. 12.
    Sowers, A. E. (1989) The study of membrane fusion and electroporation mechanisms, in Charge and Field Effects in Biosystems—II (Allen, M. J., Cleary, S. F., and Hawkridge, F. M., eds.), Plenum, New York, pp 315–337.Google Scholar
  13. 13.
    Sowers, A. E. (1989) Electrofusion of dissimilar membrane fusion partners depends on additive contributions from each of the two different membranes. Biochim. Biophys. Acta 985, 339–342.PubMedCrossRefGoogle Scholar
  14. 14.
    Abidor, I. G., and Sowers, A. E. (1992) Kinetics and mechanism of cell membrane electrofusion. Biophys. J. 61, 1557–1569.PubMedCrossRefGoogle Scholar
  15. 15.
    Chakrabarti, R., Wylie, D. E., and Schuster, S. M. (1989) Transfer of monoclonal antibodies into mammalian cells by electroporation. J. Biolog. Chem. 264, 15,494–15,500.Google Scholar
  16. 16.
    Mir, L. M., Banoun, H., and Paoletti, C. (1988) Introduction of definite amounts of nonpermeant molecules into living cells after electropermeabilization direct access to the cytosol. Exp. Cell Res. 175, 15–25.PubMedCrossRefGoogle Scholar
  17. 17.
    Ozawa, K., Hosoi, T., Tsao, C. J., Urabe, A., Uchida, T., and Takaku, F. (1985) Microinjection of macromolecules into leukemic cells by cell fusion technique: search for intracellular growth-suppressor factors. Biochem. Biophys. Res. Commun. 130, 257–263.PubMedCrossRefGoogle Scholar
  18. 18.
    Chernomordik, L. V., Sokolov, A. V., and Budker, V. G. (1990) Electrostimulated uptake of DNA by liposomes. Biochim. Biophys. Acta 1024, 179–183.PubMedCrossRefGoogle Scholar
  19. 19.
    Grasso, R. J., Heller, R., Cooley, J. C., and Haller, E. M. (1989) Electrofusion of individual animal cells directly to intact corneal epithelial tissue. Biochim. Biophys. Acta 980, 9–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Heller, R., and Grasso, R. J. (1990) Transfer of human membrane surface components by incorporating human cells into intact animal tissue by cell-tissue electrofusion. Biochim. Biophys. Acta 1024, 185–188.PubMedCrossRefGoogle Scholar
  21. 21.
    Heller, R. (1992) Spectrofluorometric assay for the quantitation of cell-tissue electrofusion. Anal. Biochem. 202, 286–292.PubMedCrossRefGoogle Scholar
  22. 22.
    Church, G. M. and Gilbert, W. (1984) Genomic sequencing. Proc. Natl. Acad. Sci. USA 81, 1991–1995.PubMedCrossRefGoogle Scholar
  23. 23.
    Reed, K. C., and Mann, D. A. (1985) Rapid transfer of DNA from agarose gels to nylon membranes. Nucleic Acids Res. 13, 7207–7221.PubMedCrossRefGoogle Scholar
  24. 24.
    Heller, R., and Grasso, R. J. (1991) Reproducible layering of tissue culture cells onto electrostatically charged membranes. J. Tissue Culture Methods 13, 25–30.CrossRefGoogle Scholar
  25. 25.
    (1985) Guide for the Care and Use of Laboratory Animals NIH Publication No 85–23, Washington, DC.Google Scholar
  26. 26.
    Heller, R., and Gilbert, R. (1992) Development of cell-tissue electrofusion for biological applications, in Guide to Electroporation and Electrofusion (Chang, D. C., Chassy, B. M., Saunders, J. A., and Sowers, A. E., eds.), Academic, San Diego, CA, pp. 393–410.Google Scholar
  27. 27.
    Heller, R. (1993) Incorporation of individual cells into intact tissue by electrofusion, in Electricity and Magnetism in Biology and Medicine (Blank, M., ed.), San Francisco Press, San Francisco, CA, pp. 115–118.Google Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Richard Heller
    • 1
    • 2
  1. 1.Department of Chemical Engineering, College of EngineeringUniversity of South FloridaTampa
  2. 2.Department of Surgery, College of MedicineTampa

Personalised recommendations