Advertisement

Peanut Transformation

  • Elisabeth Mansur
  • Cristiano Lacorte
  • William R. Krul
Part of the Methods in Molecular Biology™ book series (MIMB, volume 44)

Abstract

Peanut or groundnut (Arachis hypogaea L.) is a member of the legume family, originated in South America, and today is largely cultivated in many tropical and subtropical areas worldwide. Peanut seeds are an important source of protein, carbohydrates, and oil for humans and animals. In addition to its use as food, the oil can be used directly to fuel diesel motors and phenolic resins obtained from the shells are excellent binding agents. The remainder of the plant is also useful as animal fodder and as a green cover crop providing fixed nitrogen to the soil (1).

Keywords

Agrobacterium Strain Peanut Seed Triparental Mating Peanut Cultivar Recalcitrant Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Woodroof, J. G. (1983) Summary and future outlook, in Peanut: Production, Processing, Products (Woodroof, J. G., ed.), Avi Publishing, CT, pp 369–379Google Scholar
  2. 2.
    Food and Agriculture Organization of the United Nations (1991) FAO Yearbook, vol. 45, Statistics Series No. 91.Google Scholar
  3. 3.
    Pattee, H. E. and Young, C. T. (eds.) (1982) A look to the future, in Peanut Science and Technology, American Peanut Research and Education Society, Yoakum, TX, pp. 754–764.Google Scholar
  4. 4.
    Altenbach, S. B. and Sampson, R. B. (1990) Manipulation of methionine-rich protein genes in plant seeds. Tibtech 8, 156–160Google Scholar
  5. 5.
    Gasser, C. S. and Fraley, R. T. (1989) Genetically engineering plants for crop improvement. Science 244, 1293–1299.PubMedCrossRefGoogle Scholar
  6. 6.
    Mroginski, L. A., Kartha, K. K., and Shyluk, J. P. (1981) Regeneration of peanut (Arachis hypogaea) plantlets by in vitro culture of immature leaves. Can. J. Bot 59, 826–830.CrossRefGoogle Scholar
  7. 7.
    Pittmann, R., Banks, D. J., Kirby, J. S., and Richardson, P. E. (1983) In vitro culture of immature peanut (Arachis spp.) leaves: morphogenesis and plantlet regeneration. Peanut Sci. 10, 21–25.CrossRefGoogle Scholar
  8. 8.
    Narasimhulu, S. B. and Reddy, G. M. (1983) Plantlet regeneration from different callus cultures of Arachis hypogaea L. Plant Sci. Lett. 31, 157–163.CrossRefGoogle Scholar
  9. 9.
    McKently, A. H., Moore, G. A., and Gardner, F. P. (1990) In vitro plant regeneration of peanut from seed explants. Crop Sci. 30, 192–196.CrossRefGoogle Scholar
  10. 10.
    McKently, A. H., Moore, G. A., and Gardner, F. P. (1991) Regeneration of peanut and perennial peanut from cultured leaf tissue. Crop Sci. 32, 833–837.CrossRefGoogle Scholar
  11. 11.
    Daimon, H. and Mii, M. (1991) Multiple shoot formation and plantlet regeneration from cotyledonaty node in peanut (Arachis hypogaea L). Jpn. J. Breed. 41, 461–466.Google Scholar
  12. 12.
    Cheng, M., Hsi, D. C. H., and Phillips, G. C. (1992) In vitro regeneration of valencia-type peanut (Arachis hypogaea L.) from cultured petiolules, epicotyl sections and other seedling explants. Peanut Sci. 19, 82–87CrossRefGoogle Scholar
  13. 13.
    Ozias-Akins, P. (1989) Plant regeneration from immature embryos of peanut. Plant Cell Rep. 8, 217,218.CrossRefGoogle Scholar
  14. 14.
    Hazra, S., Sathaye, S. S., and Mascarenhas, A. F. (1989) Direct somatic embryogenesis in peanut (Arachis hypogaea L.). Bio/Technology 7, 949–951CrossRefGoogle Scholar
  15. 15.
    Sellars, R. M., Southward, G. M., and Phillips, G. C., (1991) Adventitious somatic embryogenesis from cultured immature zygotic embryos of peanut and soybean. Crop Sci. 30, 408–414.CrossRefGoogle Scholar
  16. 16.
    Durham, R. E. and Parrott, W. (1992) Repetitive somatic embryogenesis from peanut cultures in liquid medium. Plant Cell Rep. 11, 122–125.CrossRefGoogle Scholar
  17. 17.
    McKently, A. (1991) Direct somatic embryogenesis from axes of mature peanut embryos. In vitro Cell Dev. Biol. 27P, 197–200.Google Scholar
  18. 18.
    Baker, C. M. and Wetzstein, H. Y. (1992) Somatic embryogenesis and plant regeneration from leaflets of peanut, Arachis hypogaea. Plant Cell Rep. 11, 71–75.CrossRefGoogle Scholar
  19. 19.
    Gill, R. and Saxena, P. K. (1992) Direct somatic embryogenesis and regeneration of plants from seedling explants of peanut (Arachis hypogaea). promotive role of thidiazuron. Can. J. Bot. 70, 1186–1192.CrossRefGoogle Scholar
  20. 20.
    Saxena, P. K., Malik, K. A., and Gill, R. (1992) Induction by thidiazuron of somatic embryogenesis in intact seedlings of peanut. Planta 187, 421–424.CrossRefGoogle Scholar
  21. 21.
    Dong, J. D., Bi, Y. P, Xia, L. S., Sun, S. M, Song, Z. H., Guo, B., Jiang, X. C., and Shao, Q. Q. (1990) Teratoma induction and the nopaline synthase gene transfer in peanut. Acta Genet. Sin. 17, 13–16.Google Scholar
  22. 22.
    Lacorte, C., Mansur, E., Timmerman, B., and Cordeiro, A. R. (1991) Gene transfer into peanut (Arachis hypogaea L.) by Agrobacterium tumefaciens. Plant Cell Rep. 10, 354–357.CrossRefGoogle Scholar
  23. 23.
    Mansur, E., Lacorte, C., Freitas, V. G., Oliveira, D. E., Timmerman, B., and Cordeiro, A. R. (1993) Regulation of transformation efficiency of peanut (Arachis hypogaea L.) explants by Agrobacterium tumefaciens. Plant Sci. 89, 93–99.CrossRefGoogle Scholar
  24. 24.
    Vancanneyt, G., Schmidt, R., O’Connor-Sanchez, A., Willmitzer, L., and Rocha-Sosa, M. (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220, 245–250.PubMedCrossRefGoogle Scholar
  25. 25.
    Colby, S. M., Juncosa, A. M., and Meredith, C. P. (1991) Cellular differences in Agrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J. Am. Soc. Hort. Sci. 116, 356–361.Google Scholar
  26. 26.
    Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473–497.CrossRefGoogle Scholar
  27. 27.
    Gamborg, O. L., Miller, R. A., and Ojima, K. (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50, 151–158.PubMedCrossRefGoogle Scholar
  28. 28.
    Sciaky, K., Montoya, A. L., and Chilton, M.-D. (1978) Fingerprints of Agrobacterium Ti plasmids. Plasmid 1, 238–253.PubMedCrossRefGoogle Scholar
  29. 29.
    Koncz, C. and Schell, J. (1986) The promoter of Ti-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204, 383–396.CrossRefGoogle Scholar
  30. 30.
    Hood, E. E., Helmer, G. L., Fraley, R. T., and Chilton, M.-D. (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J. Bacteriol. 168, 1291–1301.PubMedGoogle Scholar
  31. 31.
    Hinchee, M. W. M., Connor-Ward, D. V., Newell, C. A., McDonnel, R. E., Sato, J. S., Gasser, C. S., Fischhoff, D. A., Re, D. B., Fraley, R. T., and Horsh, R. B. (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6, 915–922CrossRefGoogle Scholar
  32. 32.
    Ooms, G., Hooykaas, P. J. J., Moolenaar, G., and Schilperoort, R. A. (1981) Crown-gall plant tumours of abnormal morphology, induced by Agrobacterium tumefaciens carrying mutated octopine Ti-plasmids: analysis of T-DNA functions. Gene 14, 33–50PubMedCrossRefGoogle Scholar
  33. 33.
    Watson, B., Currier, T. C., Gordon, M. P., Chilton, M.-D., and Nester, E. W. (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J. Bacteriol. 123, 255–264.PubMedGoogle Scholar
  34. 34.
    Ditta, G., Stanfield, S., Corbin, D., and Helinski, D. R. (1980) Broad host range DNA cloning system for Gram-negative bacteria—construction of a gene bank of Rhizobium meliloti. Proc. Natl Acad. Sci. USA 77, 7347–7351PubMedCrossRefGoogle Scholar
  35. 35.
    Scott, R. (1988) DNA restriction and analysis by Southern hybridization, in Plant Genetic Transformatton and Gene Expression (Draper, J., Scott, R., and Armitage, P., eds.), Alden, Oxford, UK, pp 237–261.Google Scholar
  36. 36.
    Otten, L. A. B. M. and Schilperoort, R. A. (1978) A rapid micro scale method for the detection of lysopine and nopaline dehydrogenase activities. Biochim. Biophys. 527, 497–500.Google Scholar
  37. 37.
    Reynaerts, A., De Block, M., Hernalsteens, J. P., and Van Montagu, M. (1988) Selectable and screenable markers, in Plant Molecular Biology Manual (Gelvin, S. B., Shilperoort, R. A., and Verma, D. P. S., eds.), Kluwer, Academic, Dordrecht, pp. A9, 1–16.Google Scholar
  38. 38.
    Jefferson, R. A. (1987) Assaying chimeric genes in plants the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–405.CrossRefGoogle Scholar
  39. 39.
    McDonnell, R. W., Clark, R. D, Smith, W. A., and Hinchee, M. A. (1987) A simplified method for the detection of neomycin phosphotransferase II activity in transformed plant tissues. Plant Mol. Biol Rep. 5, 380–386.CrossRefGoogle Scholar
  40. 40.
    Reiss, B., Sprengel, R., Will, H., and Schaller, H. (1984) A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30, 211–218.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1995

Authors and Affiliations

  • Elisabeth Mansur
    • 1
  • Cristiano Lacorte
    • 1
  • William R. Krul
    • 2
  1. 1.Universidade do Estado do Rio de JaneiroBrazil
  2. 2.Department of Plant SciencesUniversity of Rhode IslandKingston

Personalised recommendations