Binary Ti Plasmid Vectors

  • Gynheung An
Part of the Methods in Molecular Biology™ book series (MIMB, volume 44)


Living organisms have been continuously evolving by assimilating new genetic material from the environment. However, this progress is very slow and often limited to transfer of genetic materials among closely related species. Recent developments in molecular biology and gene transfer techniques enable researchers to move genetic information among a variety of living organisms. Gene transfer techniques for higher plants can be divided into two major methods: direct DNA transfer and Agrobacterium-mediated tumor inducing (Ti)-plasmid-vector methods. Direct DNA transfer methods have been used for the transformation of a wide variety of species, especially those plant species that are recalcitrant to transformation with Ti plasmid vectors. However, the direct DNA transfer method requires more manipulation and transformation efficiency is generally much lower compared to the Ti-plasmid-vector system. Furthermore, it appears that stability of introduced genes is lower when DNA was directly transferred. Therefore, Ti vectors are commonly used for transformation of most dicot plant species that are, in general, more readily transformed using Agrobacterium-mediated DNA delivery.


Binary Vector Selectable Marker Multiple Cloning Site Kanamycin Resistance Gene Gene Transfer Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ream, L. W., and Gordon, M. P. (1982) Crown gall disease and prospects for genetic manipulation of plants. Science 218, 854–859.PubMedCrossRefGoogle Scholar
  2. 2.
    Schell, J. (1987) Transgenic plants as a tools to study the molecular organization of plant genes. Science 237, 1176–1183.CrossRefGoogle Scholar
  3. 3.
    Hooykaas, P. J. J., and Schilperoort, R. A. (1992) Agrobacterium and plant genetic engineering. Plant Mol. Biol. 19, 15–38.PubMedCrossRefGoogle Scholar
  4. 4.
    Zambryski, P., Joos, H., Genetello, J., Leemans, J., Van Montagu, M., and Schell, J. (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2, 2143–2150.PubMedGoogle Scholar
  5. 5.
    Waldron, C., Murphy, E. B., Boberts, J. L., Gustafson, G. D., Armour, S. L., and Malcolm, S. K. (1985) Resistance to hygromycin B A new marker for plant transformation studies. Plant Mol. Biol. 5, 103–108.CrossRefGoogle Scholar
  6. 6.
    Holt, J. S., Powles, S. B., and Holtum, A. M. (1993) Mechanisms and agronomic aspect of herbicide resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 203–229.CrossRefGoogle Scholar
  7. 7.
    Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J., and Schilperoort, R. A. (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303, 179,180.CrossRefGoogle Scholar
  8. 8.
    Stachel, S. E., and Nester, E. W. (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J. 5, 1445–1454.PubMedGoogle Scholar
  9. 9.
    Stachel, S. E., and Zambryski, P. (1986) virA and virG control the plant-induced activation of the T-DNA transfer process of Agrobacterium tumefaciens. Cell 46, 325–333.PubMedCrossRefGoogle Scholar
  10. 10.
    Douglas, C. J., Halperin, W., and Nester, E. W. (1982) Agrobacterium tumefaciens mutants affected in attachment to plant cells. J. Bacteriol. 152, 1265–1275.PubMedGoogle Scholar
  11. 11.
    An, G., Ebert, P. R., Mitra, A., and Ha, S. B. (1988) Binary vectors, in Plant Molecular Biology Manual (Gelvin, S. B., and Schilperoort, R. A., eds.), Kluwer, Dordrecht, Netherlands, pp A3 1–19.Google Scholar
  12. 12.
    Lichtenstein, C. P., and Fuller, S. L. (1987) Vectors for genetic engineering of plants. Genet. Eng. 6, 103–183.Google Scholar
  13. 13.
    Willmitzer, L., Dhaese, P., Schreier, P. H., Schmalenbach, W., Van Montagu, M., and Schell, J. (1983) Size, location and polarity of T-DNA-encoded transcripts in nopaline crown gall tumors; common transcripts in octopine and nopaline tumors. Cell 32, 1045–1056.PubMedCrossRefGoogle Scholar
  14. 14.
    An, G., Costa, M. A., and Ha, S.-B. (1990) Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell 2, 225–233.PubMedCrossRefGoogle Scholar
  15. 15.
    Benfey, P. N., and Chua, N.-H. (1990) The cauliflower mosaic virus promoter: combinational regulation of transcription in plants. Science 250, 959–966.PubMedCrossRefGoogle Scholar
  16. 16.
    Yenofsky, R., Fine, M., and Pellow, J. W. (1990) A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 87, 3435–3439.PubMedCrossRefGoogle Scholar
  17. 17.
    Feldmann, K. A., Marks, M. D., Christianson, M. L., Quatrano, R. S. (1989) A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243, 1351–1354.PubMedCrossRefGoogle Scholar
  18. 18.
    Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Schell, J. (1983) Expression of chimeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303, 209–213.CrossRefGoogle Scholar
  19. 19.
    Ow, D. W., Wood, K. V., DeLuca, M., de Wet, J. R., Helinski, D. R., and Howell, S. H. (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234, 856–859.PubMedCrossRefGoogle Scholar
  20. 20.
    Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.PubMedGoogle Scholar
  21. 21.
    Martin, T., Schmidt, R., Altmann, T., and Frommer, W. B. (1992) Non-destructive assay systems for detection of β-glucuronidase activity in higher plants. Plant Mol. Biol. Rep. 10, 37–46.CrossRefGoogle Scholar
  22. 22.
    Mariani, C., De Beuckeller, M., Truettner, J., Leemans, J., and Goldberg, R. B. (1990) Introduction of male sterility in plants by a chimeric ribonuclease gene. Nature 347, 737–741.CrossRefGoogle Scholar
  23. 23.
    Green, P. J., Pines, O., and Inouye, M. (1986) The role of antisense RNA in gene regulation. Annu Rev. Blochem. 55, 569–597.CrossRefGoogle Scholar
  24. 24.
    Oeller, P. W., Min-Wong, L., Taylor, L. P., Pike, D. A., and Theologis, A. (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254, 437–439.PubMedCrossRefGoogle Scholar
  25. 25.
    Teeri, T. H., Herrera-Estrella, L., Depicker, A., Van Montagu, M., and Palva, E. T. (1986) Identification of plant promoters in situ by T-DNA-mediated transcriptional fusion to the npt-II gene. EMBO J. 5, 1755–1760.PubMedGoogle Scholar
  26. 26.
    Fobert, P. R., Miki, B. L, and Iyer, V. N. (1991) Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions. Plant Mol. Biol. 17, 837–852.PubMedCrossRefGoogle Scholar
  27. 27.
    Gierl, A., and Saedler, H. (1992) Plant-transposable elements and gene tagging. Plant Mol. Biol. 19, 39–49.PubMedCrossRefGoogle Scholar
  28. 28.
    Koncz, C., Nemeth, K., Redri, G. P., and Schell, J. (1992) T-DNA insertional mutagenesis in Arabidopsis. Plant Mol. Biol. 20, 963–976.PubMedCrossRefGoogle Scholar
  29. 29.
    Feldmann, K. A. (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1, 71–82.CrossRefGoogle Scholar
  30. 30.
    van Wordragen, M. F., and Dons, H. J. M. (1992) Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol. Biol. Rep. 10, 12–36.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1995

Authors and Affiliations

  • Gynheung An
    • 1
  1. 1.Institute of Biological ChemistryWashington State UniversityPullman

Personalised recommendations