Skip to main content

Effect of Acetosyringone on Growth and Oncogenic Potential of Agrobacterium tumefaciens

  • Protocol
Agrobacterium Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 44))

  • 1093 Accesses

Abstract

Expression of the virulence genes of Agrobacterium tumefaciens occurs in acidic media containing sugars and certain phenolics secreted at plant wounds. In some strains of A. tumefaciens, exposure to these inducing conditions leads to inhibition of bacterial growth, which can then be followed by the selection of avirulent mutants (1). Observation of this effect of vir gene induction depends on the use of particular experimental conditions. This chapter first specifies experimental parameters allowing to reveal, in A. tumefaciens, the modifications that accompany vir gene induction. Other parts of the chapter then describe how the mutants that are generated in the presence of acetosyringone are recognized and characterized. These protocols may prove useful to those with an interest in Agrobacterium biology. In addition, acetosyringone enhances the ability of A. tumefaciens to transform recalcitrant host plants, and as such has been incorporated in medium used for co-cultivation of bacteria and plant tissue (25) or alternatively has been used to precondition explants prior to addition of bacteria (6). Hence, the possibility of side effects of acetosyringone on A. tumefaciens bears direct relevance to experiments dealing with transformation of crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Fortin, C., Nester, E. W., and Dion, P. (1992) Growth inhibition and loss of virulence in cultures of Agrobacterium tumefaciens treated with acetosyringone. J. Bacteriol. 174, 5676–5685.

    PubMed  CAS  Google Scholar 

  2. Godwin, I., Todd, G., Ford-Lloyd, B., and Newbury, H. J. (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep. 9, 671–675.

    Article  CAS  Google Scholar 

  3. Godwin, I. D., Ford-Lloyd, B. V., and Newbury, H. J. (1992) In vitro approaches to extending the host-range of Agrobacterium for plant transformation. Aust. J. Bot. 40, 751–763.

    Article  CAS  Google Scholar 

  4. Holford, P., Hernandez, N., and Newbury, H. J. (1992) Factors influencing the efficiency of T-DNA transfer during co-cultivation of Antirrhinum majus with Agrobacterium tumefaciens. Plant Cell Rep. 11, 196–199.

    CAS  Google Scholar 

  5. Owens, L. D., and Smigocki, A. C. (1988) Transformation of soybean cells using mixed strains of Agrobacterium tumefaciens and phenolic compounds. Plant Physiol. 88, 570–573.

    Article  PubMed  CAS  Google Scholar 

  6. Guivarc’h, A., Caissard, J.-C., Brown, S., Marie, D., Dewitte, W., Van Onckelen, H., and Chriqui, D. (1993) Localization of target cells and improvement of Agrobacterium-mediated transformation efficiency by direct acetosyringone pretreatment of carrot root discs. Protoplasma 174, 10–18.

    Article  CAS  Google Scholar 

  7. Fortin, C., Marquis, C., Nester, E. W., and Dion, P. (1993) Dynamic structure of Agrobacterium tumefaciens Ti plasmids. J. Bacteriol. 175, 4790–4799.

    PubMed  CAS  Google Scholar 

  8. Eckhardt, T. (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1, 584–588.

    Article  PubMed  CAS  Google Scholar 

  9. Cangelosi, G. A., Best, E. A., Martinetti, G., and Nester, E. W. (1991) Genetic analysis of Agrobacterium. Methods Enzymol. 204, 384–397.

    Article  PubMed  CAS  Google Scholar 

  10. Mozo, T., and Hooykaas, P. J. J. (1991) Electroporation of megaplasmids in Agrobacterium. Plant Mol. Biol. 16, 917,918.

    Article  PubMed  CAS  Google Scholar 

  11. Stachel, S. E., and Nester, E. W. (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium tumefaciens. EMBO J. 5, 1445–1454.

    PubMed  CAS  Google Scholar 

  12. Huang, M. L. W., Cangelosi, G. A., Halperin, W., and Nester, E. W. (1990) A chromosomal Agrobacterium tumefaciens gene required for effective plant signal transduction. J. Bacteriol. 172, 1814–1822.

    PubMed  CAS  Google Scholar 

  13. Rogowsky, P. M., Powell, B. S., Shirasu, K., Lin, T.-S., Morel, P., Zyprian, E. M., Steck, T. R., and Kado, C. I. (1990) Molecular characterization of the vir regulon of Agrobacterium tumefaciens complete nucleotide sequence and gene organization of the 28.63-kbp cloned as a single unit. Plasmid 23, 85–106.

    Article  PubMed  CAS  Google Scholar 

  14. Stachel, S. E., and Zambryski, P. (1986) virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell 46, 325–333.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Dion, P., Bélanger, C., Xu, D., Mohammadi, M. (1995). Effect of Acetosyringone on Growth and Oncogenic Potential of Agrobacterium tumefaciens . In: Gartland, K.M.A., Davey, M.R. (eds) Agrobacterium Protocols. Methods in Molecular Biology™, vol 44. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-302-3:37

Download citation

  • DOI: https://doi.org/10.1385/0-89603-302-3:37

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-302-3

  • Online ISBN: 978-1-59259-531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics