Advertisement

Agroinfection

  • Nigel Grimsley
Part of the Methods in Molecular Biology™ book series (MIMB, volume 44)

Abstract

The term “agroinfection” was first used (1) to describe the use of Agrobacterium for the introduction of infectious molecules to plants. This implies infection of the host plant with a molecule, the “infectious agent,” generally a virus or viroid, that has the ability to replicate and spread within the plant; the introduction of parts of agents that do not have this potential is thus outside the scope of this chapter. Subsequently, the term “agroinoculation” has also been used by some authors to describe the inoculation step (2). Replication of the agent within the plant often leads to systemic viral or viroidal symptoms that witness T-DNA transfer, independently of T-DNA integration. Nontumorigenic strains of Agrobacterium may be used; this provides the additional possibility of regenerating transgenic plants containing all or part of the agent genome integrated in the plant nuclear DNA.

Keywords

Agrobacterium Strain Monocotyledonous Plant Triparental Mating Graminaceous Plant Meristematic Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Grimsley, N., Hohn, B., Hohn, T., and Walden, R. (1986) “Agroinfection”; an alternative route for viral infection of plants by using the Ti-plasmid. Proc. Natl. Acad. Sci. USA 83, 3282–3286.PubMedCrossRefGoogle Scholar
  2. 2.
    Elmer, J. S., Sunter, G., Gardiner, W. E., Brand, L., Browning, C. K., Bisaro, D. M., and Rogers, S. G. (1988) Agrobacterium-mediated inoculation of plants with tomato golden mosaic virus DNAs. Plant Mol. Biol. 10, 225–234.CrossRefGoogle Scholar
  3. 3.
    Gardner, R. C., Chanoles, K. R., and Owens, R. A. (1986) Potato spindle viroid infections mediated by the Ti-plasmid of Agrobacterium tumefaciens. Plant Mol. Biol. 6, 221–228.CrossRefGoogle Scholar
  4. 4.
    Rogers, S. G., Bisaro, D. M., Horsch, R. B., Fraley, R. T., Hoffmann, N. L., Brand, L., et al (1986) Tomato golden mosaic virus A component DNA replicates autonomously in transgenic plants. Cell 45, 593–600.PubMedCrossRefGoogle Scholar
  5. 5.
    Grimsley, N., Hohn, T., Davies, J. W., and Hohn, B. (1987) Agrobacterium-mediated delivery of infectious maize streak virus into maize plants. Nature 325, 177–179.CrossRefGoogle Scholar
  6. 6.
    Klinkenberg, F. A. and Stanley, J. (1990) Encapsidation and spread of african cassava mosaic virus DNA A in the absence of DNA B when agroinoculated to Nicotiana benthamiana. J. Gen. Virol. 71, 1409–1412.CrossRefGoogle Scholar
  7. 7.
    Morris, B., Richardson, K., Eddy, P., Zhan, X. C., Haley, A., and Gardner, R. (1991) Mutagenesis of the AC3 open reading frame of african cassava mosaic virus DNA-A reduces DNA-B replication and ameliorates disease symptoms. J. Gen. Virol. 72, 1205–1213.PubMedCrossRefGoogle Scholar
  8. 8.
    Stanley, J., Frischmuth, T., and Ellwood, S. (1990) Defective viral DNA ameliorates symptoms of geminivirus infection in transgenic plants. Proc. Natl. Acad. Sci. USA 87, 6291–6295.PubMedCrossRefGoogle Scholar
  9. 9.
    Frischmuth, T. and Stanley, J. (1991) African cassava mosaic virus-DI DNA interferes with the replication of both genomic components. Virology 183, 539–544.PubMedCrossRefGoogle Scholar
  10. 10.
    Stenger, D. C., Stevenson, M. C., Hormuzdi, S. G., and Bisaro, D. M. (1992) A number of subgenomic DNAs are produced following agroinoculation of plants with beet curly top virus. J. Gen. Viral. 73, 237–242.CrossRefGoogle Scholar
  11. 11.
    Grimsley, N., Hohn, T., and Hohn, B. (1986) Recombination in a plant virus: template-switching in cauliflower mosaic virus. EMBO J. 5, 641–646.PubMedGoogle Scholar
  12. 12.
    Bakkeren, G., Koukolíková-Nicola, Z., Grimsley, N., and Hohn, B. (1989) Recovery of Agrobacterium tumefaciens T-DNA molecules from whole plants early after transfer. Cell 57, 847–857.PubMedCrossRefGoogle Scholar
  13. 13.
    Gal, S., Pisan, B., Hohn, T., Grimsley, N., and Hohn, B. (1991) Genomic homologous recombination in planta. EMBO J. 10, 1571–1578.PubMedGoogle Scholar
  14. 14.
    Gal, S., Pisan, B., Hohn, T., Grimsley, N., and Hohn, B. (1992) Agroinfection of transgenic plants leads to viable cauliflower mosaic virus by intermolecular recombination. Virology 187, 525–533.PubMedCrossRefGoogle Scholar
  15. 15.
    Grimsley, N. H., Jarchow, E., Oetiker, J., Schlaeppi, M., and Hohn, B. (1991) Agroinfection as a tool for the investigation of plant-pathogen interactions, in Plant Molecular Biology 2 (Hermann, R. G. and Larkins, B. A., eds.), Plenum, New York, pp. 225–238.CrossRefGoogle Scholar
  16. 16.
    Hille, J., Dekker, M., Luttighuis, H., Van Kammen, A., and Zabel, P. (1986) Detection of T-DNA transfer to plant cells by Agrobacterium tumefaciens virulence mutants using agroinfection. Mol. Gen. Genet. 205, 411–416.CrossRefGoogle Scholar
  17. 17.
    Grimsley, N. H., Hohn, B., Ramos, C., Kado, C., and Rogowsky, P. (1989) DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. Mol. Gen. Genet. 217, 309–316.PubMedCrossRefGoogle Scholar
  18. 18.
    Medberry, S. L., Lockhart, B. E. L., and Olszewski, N. E. (1990) Properties of commelina yellow mottle virus’s complete DNA sequence, genomic discontinuities and transcript suggest that it is a pararetrovirus. Nucleic Acids Res. 18, 5505–5513.PubMedCrossRefGoogle Scholar
  19. 19.
    Baulcombe, D. C., Saunders, G. R., Bevan, M. W., Mayo, M. A., and Harrison, B. D. (1986) Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321, 446–448.CrossRefGoogle Scholar
  20. 20.
    Harrison, B. D., Mayo, M. A., and Baulcombe, D. C. (1987) Virus resistance in transgenic plants that express cucumber mosaic virus satellite RNA. Nature 328, 799–802.CrossRefGoogle Scholar
  21. 21.
    Donson, J., Gunn, H. V., Woolston, C. J., Pinner, M. S., Boulton, M. I., Mullineaux, P. M., and Davies, J. W. (1988) Agrobacterium-mediated infectivity of cloned digitaria streak virus DNA. Virology 162, 248–250.PubMedCrossRefGoogle Scholar
  22. 22.
    Yamaya, J., Yoshioka, M., Sano, T., Shikata, E., and Okada, Y. (1989) Expression of hop stunt viroid from its cDNA in transgenic tobacco plants: identification of tobacco as a host plant. Mol. Plant-Microbe Interact. 2, 169–174.CrossRefGoogle Scholar
  23. 23.
    Boulton, M. I., Buchholz, W. G., Marks, M. S., Markham, P. G., and Davies, J. W. (1989) Specificity of Agrobacterium-mediated delivery of maize streak virus DNA to members of the Gramineae. Plant Mol. Biol. 12, 31–40.CrossRefGoogle Scholar
  24. 24.
    Lazarowitz, S. G. (1988) The molecular characterization of geminiviruses: infectivity and complete nucleotide sequence of the genome of a South African isolate of maize streak virus. Nucleic Acids Res. 16, 229–249.PubMedCrossRefGoogle Scholar
  25. 25.
    Boulton, M. I., Steinkellner, H., Donson, J., Markham, P. G., King, D. I., and Davies, J. W. (1989) Mutational analysis of the virion sense genes of maize streak virus. J. Gen. Virol. 70, 2309–2323.PubMedCrossRefGoogle Scholar
  26. 26.
    Lazarowitz, S. G., Pinder, A. J., Damsteegt, V. D., and Rogers, S. G. (1989) Maize streak virus genes essential for systemic spread and symptom development. EMBO J. 8, 1023–1032.PubMedGoogle Scholar
  27. 27.
    Boulton, M. I., King, D. I., Donson, J., and Davies, J. W. (1991) Point substitutions in a promoter-like region and the VI gene affect the host range and symptoms of maize streak virus. Virology 183, 114–121.PubMedCrossRefGoogle Scholar
  28. 28.
    Boulton, M. I., King, D. I, Markham, P. G., Pinner, M. S., and Davies, J. W. (1991) Host range and symptoms are determined by specific domains of the maize streak virus genome. Virology 181, 312–318.PubMedCrossRefGoogle Scholar
  29. 29.
    Shen, W. H. and Hohn, B. (1991) Mutational analysis of the small intergenic region of maize streak virus. Virology 183, 721–730.PubMedCrossRefGoogle Scholar
  30. 30.
    Schneider, M., Jarchow, E., and Hohn, B. (1992) Mutational analysis of the “conserved region” of maize streak virus suggests its involvement in replication. Plant Mol. Biol. 19, 601–610.PubMedCrossRefGoogle Scholar
  31. 31.
    Jarchow, E., Grimsley, N. H., and Hohn, B. (1991) virF, the host-range-determining virulence gene of Agrobacterium-tumefaciens, affects T-DNA transfer to Zea mays. Proc. Natl. Acad. Sci. USA 88, 10,426–10,430.PubMedCrossRefGoogle Scholar
  32. 32.
    Grimsley, N. H., Ramos, C., Hein, T., and Hohn, B. (1988) Meristematic tissues of maize plants are most susceptible to Agroinfection with maize streak virus. Bio/Technology 6, 185–189.CrossRefGoogle Scholar
  33. 33.
    Schlaeppi, M. and Hohn, B. (1992) Competence of immature maize embryos for Agrobacterium-mediated gene transfer. Plant Cell 4, 7–16.CrossRefGoogle Scholar
  34. 34.
    Shen, W. H. and Hohn, B. (1992) Excision of a transposable element from a viral vector introduced into maize plants by Agroinfection. Plant J. 2, 35–42.PubMedGoogle Scholar
  35. 35.
    Shen, W. H., Das, S., and Hohn, B. (1992) Mechanism of Ds1 excision from the genome of maize streak virus. Mol. Gen. Genet. 233, 388–394.PubMedCrossRefGoogle Scholar
  36. 36.
    Chatam, M., Matsumoto, Y., Mizuta, H., Ikegami, M., Boulton, M. I., and Davies, J. W. (1991) The nucleotide sequence and genome structure of the geminivirus miscanthus streak virus. J. Gen. Virol. 72, 2325–2331.CrossRefGoogle Scholar
  37. 37.
    Gardner, R. and Knauf, V. (1986) Transfer of Agrobacterium DNA to plants requires a T-DNA border but not the virE locus. Science 231, 725–727.PubMedCrossRefGoogle Scholar
  38. 38.
    Briddon, R. W., Lunness, P., Chamberlin, L. C. L., Pinner, M. S., Brundish, H., and Markham, P. G. (1992) The nucleotide sequence of an infectious insect-transmissible clone of the geminivirus panicum streak virus. J. Gen. Virol. 73, 1041–1047.PubMedCrossRefGoogle Scholar
  39. 39.
    Dasgupta, I., Hull, R., Eastop, S., Poggipollini, C., Blakebrough, M., Boulton, M. I., and Davies, J. W. (1991) Rice tungro bacilliform virus DNA independently infects rice after Agrobacterium-mediated transfer. J. Gen. Virol. 72, 1215–1221.PubMedCrossRefGoogle Scholar
  40. 40.
    Yamaya, J., Yoshioka, M., Meshi, T., Okada, Y., and Ohno, T. (1988) Expression of tobacco mosaic virus RNA in transgenic plants. Mol. Gen. Genet. 211, 520–525.PubMedCrossRefGoogle Scholar
  41. 41.
    Yamaya, J., Yoshioka, M., Meshi, T., Okada, Y., and Ohno, T. (1992) Cross-protection in transgenic tobacco plants expressing a mild strain of tobacco mosaic virus. Mol. Gen. Genet. 215, 173–175.CrossRefGoogle Scholar
  42. 42.
    Von Arnim, A. and Stanley, J. (1992) Determinants of tomato golden mosaic virus symptom development located on DNA-B. Virology 186, 286–293.CrossRefGoogle Scholar
  43. 43.
    Hayes, R. J., Coutts, R. H., and Buck, K. W. (1988) Agroinfecnon of Nicotiana spp. with cloned DNA of tomato golden mosaic virus. J. Gen. Virol. 69, 1487–1496.CrossRefGoogle Scholar
  44. 44.
    Stenger, D. C., Revington, G. N., Stevenson, M. C., and Bisaro, D. M. (1991) Replicational release of geminivirus genomes from tandemly repeated copies—evidence for rolling-circle replication of a plant viral DNA. Proc. Natl. Acad. Sci. USA 88, 8029–8033.PubMedCrossRefGoogle Scholar
  45. 45.
    Elmer, J. S., Brand, L., Sunter, G., Gardiner, W. E., Bisaro, D. M., and Rogers, S. G. (1988) Genetic analysis of the tomato golden mosaic virus II. The product of the AL1 coding sequence is required for replication. Nucleic Acids Res. 16, 7043–7060.PubMedCrossRefGoogle Scholar
  46. 46.
    Hayes, R. J., Coutts, R. H. A., and Buck, K. W. (1989) Stability and expression of bacterial genes in replicating geminivirus vectors in plants. Nucleic Acids Res. 17, 2391–2403.PubMedCrossRefGoogle Scholar
  47. 47.
    Elmer, S and Rogers, S. G. (1990) Selection for wild type size derivatives of tomato golden mosaic virus during systemic infection. Nucleic Acids Res. 18, 2001–2006.PubMedCrossRefGoogle Scholar
  48. 48.
    Hayes, R. J. and Buck, K. W. (1989) Replication of tomato golden mosaic virus DNA B in transgenic plants expressing open reading frames (ORFs) of DNA A: requirement of ORF AL2 for production of single-stranded DNA. Nucleic Acids Res. 17, 10,213–10,222.PubMedCrossRefGoogle Scholar
  49. 49.
    Hanley-Bowdoin, L., Elmer, J. S., and Rogers, S. G. (1990) Expression of functional replication protein from tomato golden mosaic virus in transgenic tobacco plants. Proc. Natl. Acad. Sci. USA 87, 1446–1450.PubMedCrossRefGoogle Scholar
  50. 50.
    Gardiner, W. E., Sunter, G., Brand, L., Elmer, J. S., Rogers, S. G., and Bisaro, D. M. (1988) Genetic analysis of tomato golden mosarc virus: the coat protein is not required for systemic spread or symptom development. EMBO J. 7, 899–904.PubMedGoogle Scholar
  51. 51.
    Hanley-Bowdoin, L., Elmer, J. S., and Rogers, S. G. (1989) Functional expression of the leftward open reading frames of the A component of tomato golden mosaic virus in transgenic tobacco plants. Plant Cell 1, 1057–1067.PubMedCrossRefGoogle Scholar
  52. 52.
    Hayes, R. J., Petty, I. T., Coutts, R. H. A., and Buck, K. W. (1988) Gene amplification and expression in plants by a replicating geminivirus vector. Nature 334, 179–182.CrossRefGoogle Scholar
  53. 53.
    Hanley-Bowdoin, L., Elmer, J. S., and Rogers, S. R. (1988) Transient expression of heterologous RNAs using tomato golden mosaic virus. Nucleic Acids Res. 16, 10,511–10,528.PubMedCrossRefGoogle Scholar
  54. 54.
    Gerlach, W. L., Llewellyn, D., and Haseloff, J. (1987) Construction of a plant disease resistance gene from the satellite RNA of tobacco ringspot virus. Nature 328, 802–805.CrossRefGoogle Scholar
  55. 55.
    Kheyrpour, A., Bendahmane, M., Matzeit, V., Accotto, G. P., Crespi, S., and Gronenborn, B. (1991) Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19, 6763–6769.CrossRefGoogle Scholar
  56. 56.
    Dale, P. J., Marks, M. S., Brown, M. M., Woolston, C. J., Gunn, H. V., Mullineaux, P. M., et al. (1989) Agroinfection of wheat: maculation of in vitro grown seedlings and embryos. Plant Sci. 63, 237–245.CrossRefGoogle Scholar
  57. 57.
    Creissen, G., Smith, C., Francis, R., Reynolds, H., and Mullineaux, P. (1990) Agrobacterium-and microprojectile-mediated viral DNA delivery into barley microspore-derived cultures. Plant Cell Rep. 8, 680–683.CrossRefGoogle Scholar
  58. 58.
    Woolston, C. J., Barker, R., Gunn, H., Boulton, M. I., and Mullineaux, P. M. (1988) Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA. Plant Mol. Biol. 11, 35–43.CrossRefGoogle Scholar
  59. 59.
    Dale, P. J., Marks, M. S., Woolston, C. J., Gunn, H. V., Mullineaux, P. M., Lewis, D. M., and Chen, D. F. (1989) Agrobacterium delivers DNA to wheat, in Annual report, AFRC Institute of Plant Science Research and John Innes Institute, 1988, Norwich, UK, pp. 9–10.Google Scholar
  60. 60.
    Marks, M. S., Kemp, J. M., Woolston, C. J., and Dale, P. J. (1989) Agroinfection of wheat: a comparison of Agrobacterium strains. Plant Sci., 63, 247–256.CrossRefGoogle Scholar
  61. 61.
    Meshi, T., Ishikawa, M., Motoyoshi, F., Semba, K., and Okada, Y. (1986) In vitro transcription of infectious RNAs from full-length cDNAs of tobacco mosaic virus. Proc. Natl. Acad. Sci. USA 83, 5043–5047.PubMedCrossRefGoogle Scholar
  62. 62.
    Sambrook, J., Fritsch, E. F, and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  63. 63.
    Escudero, J. and Hohn, B. (1994) The Maize Handbook (Freeling, M. and Walbot, V., eds.), Springer-Verlag, New York, pp. 599–602.Google Scholar
  64. 64.
    Stachel, S., Messens, E., Van Montagu, M. V., and Zambryski, P. (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318, 624–629.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1995

Authors and Affiliations

  • Nigel Grimsley
    • 1
  1. 1.Laboratoire de Biologie Moleculaire des Relations Plantes-MicroorganismesCNRS-INRACastanet-TolosanFrance

Personalised recommendations