Assessing Cadmium Partitioning in Transgenic Plants

  • George J. Wagner
Part of the Methods in Molecular Biology™ book series (MIMB, volume 44)


Several research groups have undertaken gene transfer studies to test the feasibility of using animal metallothionein (MT; a Cd, Zn, Cu, Au, Ag, etc. binding peptide) to partition and sequester pollutant metals in plant tissues. To date, several mammalian MT genes have been expressed constitutively in Nicotiana and Brassica species and the effects of their presence on Cd accumulation and Cd tolerance have been assessed. General objectives of these studies have been:
  1. 1.

    To sequester metal in unconsumed tissues of food crops in order to reduce the transfer of undesirable metals from crops to humans, and

  2. 2.

    To make plants more tolerant to the presence of accumulated metal so as to develop super-accumulators that might be useful for bioremediation of contaminated environments or for biomining of valuable metals.



Transgenic Plant Flame Atomic Absorption Spectroscopy Tissue Partitioning Tobacco Leaf Extract Reduce Leaf Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nieboer, E. and Richardson, D. H. S. (1980) The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ. Pollution (Series B) 1, 3–26.CrossRefGoogle Scholar
  2. 2.
    Clarkson, D. T. (1983) Movement of ions across roots, in Solute Transport in Plant Cells and Tissues (Baker, D. A. and Hall, J. L., ed.), Wiley, New York, pp. 251–305.Google Scholar
  3. 3.
    Marschner, H. (1983) General introduction to the mineral nutrition of plants, in Encyclopedia of Plant Physiology (Laüchli, A. and Bieleski, R., eds.), Springer-Verlag, Berlin, pp. 5–49.Google Scholar
  4. 4.
    Verkleij, J. A. C. and Schat, H. (1990) Mechanisms of metal tolerance in higher plants, in Evolutionary Aspects of Heavy Metal Tolerance in Plants (Shaw, J., ed.), CRC Press, Boca Raton, FL, pp. 179–193.Google Scholar
  5. 5.
    Wagner, G. J. (1993) Accumulation of Cd in crop plants and its consequences to human health. Adv. Agronomy 51, 173–211.CrossRefGoogle Scholar
  6. 6.
    Cataldo, D. A., Garland, T. R., and Wildung, R. E. (1981) Cadmium distribution and chemical fate in soybean plants. Plant Physiol. 68, 835–839.PubMedCrossRefGoogle Scholar
  7. 7.
    Hill, J. (1980) The remobilization of nutrients from leaves. J. Plant Nutr. 2, 407–444.CrossRefGoogle Scholar
  8. 8.
    Fahn, A. (1988) Secretory tissues in plants. New Phytol. 108, 229–257.CrossRefGoogle Scholar
  9. 9.
    Kagr, J. H. R. (1991) Overview of metallothionein. Meth. Enzymol. 205, 613–626.CrossRefGoogle Scholar
  10. 10.
    Kay, J., Cryer, A., Darke, B. M., Kille, P., Lees, W. E., Norey, C. G., and Stark, J. M. (1991) Naturally occurring and recombinant metallothioneins structure, immunoreactivity and metal-binding functions. Int. J. Biochem. 23, 1–5.PubMedCrossRefGoogle Scholar
  11. 11.
    Robinson, N. J., Gupta, A., Fordham-Skelton, A. P., Coy, R. R. D., Whitton, B. A., and Huckle, J. W. (1990) Procaryotic metallothionein gene characterization and expression: chromosome crawling by ligation-mediated PCR. Proc. R. Sot. Lond. B 242, 241–247.CrossRefGoogle Scholar
  12. 12.
    Evans, I. M., Gatehouse, L. N., Gatehouse, J. A., Robinson, N. J., and Croy, R. R. D. (1990) A gene from pea (Pisum sativum L.) with homology to metallothionein genes. FEBS Lett. 262, 29–32.PubMedCrossRefGoogle Scholar
  13. 13.
    DeMiranda, J. R., Thomas, J. R., Thurman, M. A., and Tomset, A. B. (1990) Metallothionein genes from the flowering plant Mimulus gullatus. FEBS Lett. 260, 277–280.CrossRefGoogle Scholar
  14. 14.
    de Framond, A. J. (1991) A metallothionein-like gene from maize. FEBS Lett. 290, 103–106.PubMedCrossRefGoogle Scholar
  15. 15.
    Kawashima, I., Inokuchi, Y., Chino, M., Kimura, M., and Shimizv, N. (1991) Isolation of a gene for a metallothionein-like protein from soybean. Plant Cell Physiol. 32, 913–916.Google Scholar
  16. 16.
    Kille, P., Winge, D. P., Harwood, J. L., and Kay, J. (1991) A plant metallothionein produced in E. coli. FEBS Lett. 295, 171–175.PubMedCrossRefGoogle Scholar
  17. 17.
    Tommey, A. M., Shi, J., Lindsay, W. P., Urwin, P. E., and Robinson, N. J. (1991) Expression of the pea gene PsMTA in E. coli. FEBS Lett. 292, 48–52.PubMedCrossRefGoogle Scholar
  18. 18.
    Ortiz, D. F., Kreppel, L., Speiser, D. M., Scheel, G., McDonald, G., and Ow, D. W. (1992) Heavy metal tolerance in fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J. 11, 3491–3499.PubMedGoogle Scholar
  19. 19.
    Maiti, I. B., Wagner, G. J., and Hunt, A. G. (1991) Light inducible and tissue-specific expression of a chimeric mouse metallothionein cDNA gene in tobacco. Plant Sci. 76, 99–107.CrossRefGoogle Scholar
  20. 20.
    Maiti, I. B., Wagner, G. J., Yeargan, R., and Hunt, A. G. (1989) Inheritance and expression of the mouse metallothionein gene in tobacco. Plant Physiol. 91, 1020–1024.PubMedCrossRefGoogle Scholar
  21. 21.
    Wagner, G. J. and Yeargan, R. (1986) Variation in Cd accumulation potential and tissue distribution of Cd in tobacco. Plant Physiol. 82, 274–279.PubMedCrossRefGoogle Scholar
  22. 22.
    Schardl, C. L., Byrd, A. D., Benzion, G., Altschuler, M. A., Hildebrand, D. F., and Hunt, A. G. (1987) Design and construction of a versitile system for the expression of foreign genes in plants. Gene 61, 1–11.PubMedCrossRefGoogle Scholar
  23. 23.
    Maiti, I. B., Hunt, A. G., and Wagner, G. J. (1988) Seed-transmissible expression of mammalian metallothionein in transgenic tobacco. Biochem. Biophys. Res. Comm. 150, 640–647.PubMedCrossRefGoogle Scholar
  24. 24.
    Yeargan, R., Maiti, I. B., Nielsen, M. T., Hunt, A. G., and Wagner, G. J. (1992) Tissue partitioning of Cd in transgenic tobacco seedlings and field grown plants expressing the mouse metallothionein I gene. Transgenic Res. 1, 261–267.PubMedCrossRefGoogle Scholar
  25. 25.
    Vogeli-Lange, R. and Wagner, G. J. (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves—implication of a transport function for cadmium-binding peptides. Plant Physiol. 92, 1086–1093.PubMedCrossRefGoogle Scholar
  26. 26.
    Krotz, R. M., Evangelou, B. P., and Wagner, G. J. (1989) Relationships between Cd, Zn, Cd-peptide and organic acid in tobacco suspension cells. Plant Physiol. 91, 780–787.PubMedCrossRefGoogle Scholar
  27. 27.
    Rauser, W. E. (1990) Phytochelatins. Annu. Rev. Plant Physiol. 59, 61–86.Google Scholar
  28. 28.
    Lefebvre, D. D., Miki, B. L., and Laliberte, J. (1987) Mammalian metallothionein functions in plants. Biotechnol. 5, 1053–1056.CrossRefGoogle Scholar
  29. 29.
    Misra, S. and Gedamu, L. (1989) Heavy metal tolerant transgenic Brassica and Nicotiana plants. Theor. Appl. Genet. 78, 161–168.CrossRefGoogle Scholar
  30. 30.
    Brandle, J. E., Labbe, H., Hattori, J., and Miki, B. L. (1993) Field performance and heavy metal concentrations of transgenic flue-cured tobacco expressing a mammalian metallothionein-β-glucuronidase gene fusion. Genome 36, 255–260.PubMedCrossRefGoogle Scholar
  31. 31.
    Pautot, V., Ryszard, B., and Tepfer, M. (1989) Expression of a mouse metallothionein gene in transgenic plant tissues. Gene 77, 133–140.PubMedCrossRefGoogle Scholar
  32. 32.
    Hatfield, J. L., Egli, D. B., Leggett, J. E., and Peaslee, D. E. (1974) Effect of applied nitrogen on the nodulation and early growth of soybeans. Agron. J. 66, 112–114.CrossRefGoogle Scholar
  33. 33.
    Wagner, G. J., Sutton, T. G., and Yeargan, R. (1988) Root control of leaf cadmium accumulation in tobacco. Tobacco Sci. 190(20), 64–68.Google Scholar
  34. 34.
    Sano, T., Glazer, A. N., and Cantor, C. R. (1992) A streptavidin-metallothionein chimera that allows specific labeling of biological materials with many different heavy metal ions. Proc. Natl. Acad. Sci. USA 89, 1534–1538.PubMedCrossRefGoogle Scholar
  35. 35.
    Ye, Z. and Varner, J. E. (1991) Tissue-specific expression of cell-wall proteins in developing soybean tissues. Plant Cell 3, 23–37.PubMedCrossRefGoogle Scholar
  36. 36.
    Richards, M. (1991) Purification and quantification of metallothioneins by reversed-phase high performance liquid chromatography. Methods Enzymol. 205, 217–238.PubMedCrossRefGoogle Scholar
  37. 37.
    Klaassen, C. D. and Lehman-McKeeman, L. D. (1991) Separation and quantification of isometallothroneins by high performance liquid chromatography-atomic absorption spectrometry. Methods Enzymol. 205, 190–198.PubMedCrossRefGoogle Scholar
  38. 38.
    Otsuka, F., Koizumi, S., Kimura, M., and Ohsawa, M. (1988) Silver staining for carboxymethylated metallothioneins in polyacrylamide gels. Anal. Biochem. 168, 184–192.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1995

Authors and Affiliations

  • George J. Wagner
    • 1
  1. 1.Department of AgronomyUniversity of KentuckyLexington

Personalised recommendations