Quantifying Phytohormones in Transformed Plants

  • Els Prinsen
  • Pascale Redig
  • Miroslav Strnad
  • Ivan Galís
  • Walter Van Dongen
  • Henri Van Onckelen
Part of the Methods in Molecular Biology™ book series (MIMB, volume 44)


Physicochemical techniques are very specific, sensitive, and accurate techniques widely used for phytohormone analysis (for a review see refs. 1, 2, 3). Liquid chromatography mass spectrometry (LC-MS) or gas chromatography-coupled mass spectrometry (GC-MS) in particular, recently have become more important for both qualitative and quantitative analyzes of all phytohormones, except ethylene (for a recent review see ref. 3). Specific purification is, however, necessary prior to high-performance liquid chromatography (HPLC), gas chromatography (GC), LC-MS, or GC-MS. On the other hand, we have immunological techniques available through radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA). The advantages of immunochemical techniques are their high sensitivity, high specificity, and an extremely short analysis time. There are a lot of reports on poly- and monoclonal antibodies for the analysis of plant hormones including cytokinins (4, 5, 6, 7). The mass spectrometric fragmentation pattern from electron impact (EI) GC-MS is a frequently used identification criterion. Using LC-MS for qualitative and quantitative cytokinin analysis, derivatization can be omitted (8). Moreover, cytokinins exhibit strong specific UV absorbance in the 220–300 nm range. Since UV spectroscopy is nondestructive, mass spectrometry and UV spectroscopy are complementary for the identification of cytokinins (9). Recently, qualitative LC-MS analysis has also been described for abscisic acid (ABA) (10), however, deuterated ABA obtained by active hydrogen exchange (11) is not suitable for thermospray conditions (our unpublished results).


Liquid Chromatography Mass Spectrometry Column Material Tetra Butyl Ammonium Hydroxide Radioactive Ligand Phytohormone Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rivier, L. and Crozier, A. (1987) Principles and Practice of Plant Hormone Analysis, vols. 1 and 2, Academic, LondonGoogle Scholar
  2. 2.
    Takahashi, N. (1986) Chemistry of Plant Hormones, CRC, Boca Raton, FLGoogle Scholar
  3. 3.
    Hedden, P. (1993) Modern methods for the quantitative analysis of plant hormones. Annu Rev. Plant Physiol. Mol. Biol. 44, 107–129CrossRefGoogle Scholar
  4. 4.
    Weiler, E. W. (1980) Radioimmunoassay for trans-zeatin and related cytokinins. Planta 149, 155–162.CrossRefGoogle Scholar
  5. 5.
    Weiler, E. W. (1984) Immunoassay of plant growth regulators. Annu. Rev Plant Physiol. 35, 85–95.CrossRefGoogle Scholar
  6. 6.
    Eberle, J., Arnscheidt, A., Klix, D., and Weller, E. W. (1986) Monoclonal antibodies to plant growth regulators III. Zeatinriboside and dihydrozeatin-riboside. Plant Physiol. 81, 516–521.PubMedCrossRefGoogle Scholar
  7. 7.
    Khan, S. A., Humayun, M. Z., and Jacob, T. M. (1977) A sensitive radioimmunoassay for isopentenyl-adenosine. Anal. Biochem. 83, 632–635.PubMedCrossRefGoogle Scholar
  8. 8.
    Imbault, N., Moritz, T., Nilsson, O., Chen, H.-J., Bollmark, M., and Sandberg, G. (1993) Separation and identification of cytokinins using combined capillary liquid chromatography/mass spectrometry. Biol. Mass Spec. 22, 201–210.CrossRefGoogle Scholar
  9. 9.
    Horgan, R. and Scott, I. M. (1987) Cytokinins, in Principles and Practice of Plant Hormone Analysis, vol. 2, Academic, London, pp. 303–365.Google Scholar
  10. 10.
    Hogge, L. R., Abrams, G. D., Abrams, S. R., Thibault, P., and Pleasance, S. (1992) Characterization of abscisic acid and metabolites by combined liquid chromatography-mass spectrometry with ion-spray and plasma-spray ionization techniques. J. Chromatogr. 623, 255–263.CrossRefGoogle Scholar
  11. 11.
    Milborrow, B. V. (1971) Abscisic acid, in Aspects of Terpenoid Chemistry and Biochemistry (Goodwin, T. W., ed.), Academic, London, pp. 137–151.Google Scholar
  12. 12.
    Prinsen, E., Rüdelsheim, P., and Van Onckelen, H. (1991) Extraction, purification and analysis of endogenous indole-3-acetic acid and abscisic acid, in A Laboratory Guide for Cellular and Molecular Plant Biology (Negrutiu, I. and Gharti-Chhetri, G., eds), Birkhhser Verlag, Basel, Switzerland, pp. 175–185, 323–324.Google Scholar
  13. 13.
    Schlenk, H. and Gellerman, J. L. (1960) Esterification of fatty acids with diazomethane on a small scale. Anal. Chem. 32, 1412–1414.CrossRefGoogle Scholar
  14. 14.
    Bialek, K. and Cohen, J. D. (1986) 13C6-[Benzene-ring]indole-3-acetic acid. Plant Physiol. 80, 14–19.CrossRefGoogle Scholar
  15. 15.
    Zeevaart, J. A. D, Heath, T. G., and Gage, D. A. (1989) Evidence for a universal pathway of abscisic acid biosynthesis in higher plants from 18O incorporation patterns. Plant Physiol. 91, 1594–1601.PubMedCrossRefGoogle Scholar
  16. 16.
    Koshimizu, K. and Iwamura, H. (1986) Cytokinins, in Chemistry of Plant Hormones (Takahashi, N., ed.), CRC, Boca Raton, FL, pp. 153–199Google Scholar
  17. 17.
    Strnad, M., Vaněk, T., Binarová, P., Kamínek, M., and Hanŭs, J. (1990) Enzyme immunoassays for cytokinins and their use for immunodetection of cytokinins in alfalfa cell cultures, in Molecular Aspects of Hormonal Regulation of Plant Development (Kutáček, M., Elliott. M. C., and Macháčková, I., eds.), SPB Academic Publishers, The Hague, The Netherlands, pp. 41–54.Google Scholar
  18. 18.
    Rodbard, D. (1974) Statistical quality control and routine data processing for radioimmunoassays and immunoradiometric assays. Clin. Chem. 20(10), 1255–1270.PubMedGoogle Scholar
  19. 19.
    Rivier, L., Milon, H., and Pilet, P.-E. (1977) Gas chromatography-mass spectrometric determinations of abscisic acid levels in the cap and the apex of maize roots. Planta 134, 23–27.CrossRefGoogle Scholar
  20. 20.
    Gray, R. T., Mallaby, R., Ryback, G., and Williams, V. P. (1974) Mass spectra of methyl abscisate and isotopically labelled analogues. J. C. S. Perkin II, 919–924.Google Scholar
  21. 21.
    Bialek, K. and Cohen, J. D. (1989) Quantization of indoleacetic acid conjugates in bean seeds by direct tissue hydrolysis. Plant Physlol 90, 398–400.CrossRefGoogle Scholar
  22. 22.
    Bialek, K. and Cohen, J D. (1986) Isolation and partial characterization of the major amide-linked conjugate of indole-3-acetic acid from Phaseolus vulgaris L. Plant Physiol. 80, 99–104.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1995

Authors and Affiliations

  • Els Prinsen
    • 1
  • Pascale Redig
    • 1
  • Miroslav Strnad
    • 2
  • Ivan Galís
    • 3
  • Walter Van Dongen
    • 1
  • Henri Van Onckelen
    • 1
  1. 1.Department of BiologyUniversity of AntwerpWilrijkBelgium
  2. 2.Department of Plant Biotechnology, Institute of Experimental BotanyCzech Academy of SciencesOlomoucCzech Republic
  3. 3.Department of Plant Transgenesis, Institute of Plant Molecular BiologyCzech Academy of SciencesČeské BudějoviceCzech Republic

Personalised recommendations