Advertisement

Fluorometric GUS Analysis for Transformed Plant Material

  • Kevan M. A. Gartland
  • Julian P. Phillips
  • Stanislav Vitha
  • Karel Beneš
Part of the Methods in Molecular Biology™ book series (MIMB, volume 44)

Abstract

The use of reporter genes in transgenic plants provides an excellent opportunity to investigate the ways in which promoters and other regulatory elements regulate gene expression. Neomycin phosphotransferase II (1), chloramphenicol acetyltransferase (2), luciferase (3), and β-glucuronidase (GUS; 4) genes may each be used to provide some indications of the extent and sites of gene expression. Each reporter gene system has particular requirements for assaying gene expression and distinctive features. The neomycin phosphotransferase and chloramphenicol acetyltransferase systems require the use of radioisotopes or HPLC, whereas the luciferase system requires a luminometer or darkroom facilities. The GUS reporter gene system, in contrast, is quick, easy to use, sensitive, does not require radioisotopes, and is relatively inexpensive. Plant biotechnologists use the Escherichia coli GUSA gene in their assessments of reporter gene activity. The E. coli GUS has a monomeric mol wt of 68 kDa, and exists as a tetramer in vivo (5).

Keywords

Neomycin Phosphotransferase Reporter Gene Activity Methyl Umbelliferone Chloramphenicol Acetyltransferase Stop Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Chen, W.-H., Gartland, K. M. A., Davey, M. R., Sotak, R., Gartland, J. S., Mulligan, B. J., et al. (1987) Transformation of sugarcane protoplasts by direct uptake of a selectable chimaeric gene. Plant Cell Rep. 6, 297–301.CrossRefGoogle Scholar
  2. 2.
    Ward, A., Etessami, P., and Stanley J. (1988) Expression of a bacterial gene in plants mediated by infectious geminivirus DNA. EMBO J. 7, 1583–1587.PubMedGoogle Scholar
  3. 3.
    de Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R., and Subramani S. (1987) Firefly luciferase gene. structure and expression in mammalian cells. Mol. Cell Biol. 7, 725–737.PubMedGoogle Scholar
  4. 4.
    Jefferson, R. A. (1987) Assaying chimeric gene expression in plants the GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–405.CrossRefGoogle Scholar
  5. 5.
    Wilson, K. J., Giller, K. E., and Jefferson, R. A. (1991) Beta-Glucuronidase (GUS) operon fusions as a tool for studying plant-microbe interactions, in Advances in Molecular Genetics of Plant-Microbe Interactions (Hennecke, H. and Verma, D. P. S., eds.), Kluwer, The Netherlands, pp. 226–229.Google Scholar
  6. 6.
    Gallagher, S. R. (ed.) (1992) GUS Protocols, Academic, London.Google Scholar
  7. 7.
    Jefferson, R. A. (1989) The GUS reporter gene system. Nature 342, 837,838.PubMedCrossRefGoogle Scholar
  8. 8.
    Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.PubMedGoogle Scholar
  9. 9.
    Vitha, S., Beneš, K., Michalová, M., and Ondrej, M. (1993) Quantitative β-glucuronidase assay in transgenic plants. Biol. Plant 35, 151–155.CrossRefGoogle Scholar
  10. 10.
    Phillips, J. P., Xing, T., Gartland, J. S., Elliott, M. C., and Gartland, K. M. A. (1992) Variation in β-glucuronidase activity in transgenic sugar beet roots. Plant Growth Reg. 11, 319–325.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1995

Authors and Affiliations

  • Kevan M. A. Gartland
    • 1
  • Julian P. Phillips
    • 2
  • Stanislav Vitha
    • 3
  • Karel Beneš
    • 3
  1. 1.Department of Molecular and Life SciencesUniversity of Abertay DundeeScotland
  2. 2.Gatersleben Research InstituteGaterslebenGermany
  3. 3.Faculty of BiologyUniversity of South BohemiaČeské BudějoviceCzech Republic

Personalised recommendations