Skip to main content

Transformation of Soybean (Glycine max) via Agrobacterium tumefaciens and Analysis of Transformed Plants

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 44))

Abstract

The transfer of genetic material into soybean (Glycine max L. Merr.) plant tissues has been accomplished by several methods: electroporation (1), microprojectiles (2), and by the more widely used Agrobacterium-mediated T-DNA transfer (3,4). The transformation of soybean by electroporation-mediated gene transfer appears to be efficient for obtaining stable transformants in soybean cells (1). However, the disadvantage of this method is that the efficiency is affected by many variables, such as voltage, duration, and spacing of electrical pulses, size and number of protoplasts, buffer composition, temperature, concentration, and form of DNA. Thus, optimum electroporation must be determined for each protoplast type. The transformation of soybean by particle bombardment (2), in which the microprojectiles are used to transfer the genetic material into meristematic cells of immature seeds, appears to be simple and very effective. However, it requires a knowledge of the design of the acceleration instruments for those who wish to build their own, or at least access to an instrument that can control the acceleration of microprojectiles. These limitations presently restrict genetic engineering of soybean to some university and corporate laboratories.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dhir, S. K., Dhir, S., Savka, M. A., Belanger, F., Kritz, A. L., Farrand, S. K., and Widholm, J. M. (1992) Regeneration of transgenic soybean (Glycine max L) plants from electroporated protoplasts. Plant Physiol. 99, 81–88.

    Article  PubMed  CAS  Google Scholar 

  2. McCabe, D. E., Swain, W. F., Martinell, B. J., and Christou, P. (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6, 923–926.

    Article  Google Scholar 

  3. Hinchee, M. A. W., Cannor-Ward, D. V., Newell, C. A., McDonnell, R. E., Sato, S. J., Gasser, C. S., et al. (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6, 915–923.

    Article  CAS  Google Scholar 

  4. Chee, P. P., Fober, K. A., and Slightom, J. L. (1989) Transformation of soybean (Glycine max) by Agrobacterium tumefaciens. Plant Physiol. 91, 1212–1218.

    Article  PubMed  CAS  Google Scholar 

  5. Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R., Flick, J. S., Adams, S. P., et al. (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80, 4803–4807.

    Article  PubMed  CAS  Google Scholar 

  6. Mauri, N., Sutton, D. W., Murray, M. G., Slightom, J. L., Merlo, D. J., Reichert, N. A., et al. (1983) Phaseolin gene from bean is expressed after transfer to sunflower via tumor-inducing plasmid vectors. Science 222, 476–482.

    Article  Google Scholar 

  7. Graves, A. C. F. and Goldman, S. L. (1986) The transformation of Zea mays seedlings with Agrobacterium tumefaciens. Plant Mol. Biol. 7, 43–50.

    Article  CAS  Google Scholar 

  8. Felmann, K. A. and Marks, M. D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana: a non-tissue culture approach. Mol. Gen. Genet. 208, 1–9.

    Article  Google Scholar 

  9. Feldmann, K. A., Marks, M. D., Christianson, M. L., and Quatrano, R. S. (1989) A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243, 1351–1354.

    Article  PubMed  CAS  Google Scholar 

  10. Ulian, E. C., Smith, R. H., Gould, J. H., and McKnight, T. D. (1988) Transformation of plants via the shoot apex. In Vitro Cellular Dev. Biol. 24, 951–954.

    Article  Google Scholar 

  11. Mariotti, D., Fontana, G. S., and Santini, L. (1989) Genetic transformation of grain legumes: Phaseolus vulgaris and P coccineus L. J. Genet. Breed. 43, 77–82.

    Google Scholar 

  12. Schrammeijer, B., Sijmons, P. C., van den Elzen, P. J. M., and Hoekema A. (1990) Meristem transformation of sunflower via Agrobacterium. Plant Cell Rep. 9, 55–60.

    Article  CAS  Google Scholar 

  13. An, G. (1986) Development of plant promoter expression vectors for analysis of differentral activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol. 81, 86–91

    Article  PubMed  CAS  Google Scholar 

  14. Reiss, B., Sprengel, R., Will, H., and Schaller, H. (1984) A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30, 211–218

    Article  PubMed  CAS  Google Scholar 

  15. Mullis, K. B., Faloona, F., Scharf, S. J., Saiki, R. K, Horn, G. T., and Erlich, H. A. (1986) Specific enzymatic amplification of DNA in vitro the polymerase chain reaction. Cold Spring Harbor Symp. Quant. Biol. 51, 263–273.

    PubMed  CAS  Google Scholar 

  16. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N. (1985) Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1305–1354.

    Article  Google Scholar 

  17. Wang, K., Herrera-Estrella, L., Van Montagu, M., and Zambryski, P. (1984) Right 25 bp terminus sequence of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38, 455–462.

    Article  PubMed  CAS  Google Scholar 

  18. Jorgensen, R., Snyder, C., and Jones, J. D. G. (1987) T-DNA is organized predominantly in inverted repeat structures in plants transformed with Agrobacterium tumefaciens C58 derivatives. Mol. Gen. Genet. 207, 471–477.

    Article  CAS  Google Scholar 

  19. Riggs, C. D. and Bates, G. W. (1986) Stable transformation of tobacco by electroporation evidence for plasmid concatenation. Proc. Natl. Acad. Sci. USA 83, 5602–5606.

    Article  PubMed  CAS  Google Scholar 

  20. Christou, P., Swain, W. F., Yang, N.-S., and McCabe D. E. (1989) Inheritance and expression of foreign genes in transgenic soybean plants. Proc. Natl. Acad. Sci. USA 86, 7500–7504.

    Article  PubMed  CAS  Google Scholar 

  21. Deprcker, A., Stachel, S., Dhaese, S., Zambryski, P., and Goodman, H. M. (1982) Nopaline synthase: transcript mapping and DNA sequence. J. Mol. Appl. Genet. 1, 561–573.

    Google Scholar 

  22. Mazodier, P., Cossart, P., Giraud, E., and Gasser, F. (1985) Completion of the nucleotide sequence of the central region of Tn5 confirms the presence of three resistance genes. Nucl. Acid Res. 13, 195–205.

    Article  CAS  Google Scholar 

  23. Southern, E. M. (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Chee, P.P., Slightom, J.L. (1995). Transformation of Soybean (Glycine max) via Agrobacterium tumefaciens and Analysis of Transformed Plants. In: Gartland, K.M.A., Davey, M.R. (eds) Agrobacterium Protocols. Methods in Molecular Biology™, vol 44. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-302-3:101

Download citation

  • DOI: https://doi.org/10.1385/0-89603-302-3:101

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-302-3

  • Online ISBN: 978-1-59259-531-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics