Skip to main content

Hydrogen Exchange Techniques

  • Protocol
Protein Stability and Folding

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 40))

Abstract

Hydrogen exchange, in conjunction with NMR spectroscopy, is the only method with which one can, in principle, monitor protein folding and stability at nearly every individual amino acid residue in a protein. The unique power of hydrogen exchange is attributable to the ubiquity and the chemistry of the peptide NH group in proteins: Peptide NHs are labile to exchange with hydrogens of the aqueous solvent, and exchange often is slowed by many orders of magnitude in native proteins. If the hydrogen isotope in water is deuterium, then the exchange event in a vast excess of D2O can be summarized in the following scheme:

Deuterons are silent in a proton NMR experiment, so the resonances corresponding to the peptide NH will diminish in intensity as exchange proceeds. If NH resonance assignments have been made for the peptide or protein of interest, then exchange can be monitored at known sites throughout the sequence and structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Molday, R. S., Englander, S. W., and Kallen, R. G. (1972) Biochemistry 11, 150–158.

    Article  PubMed  CAS  Google Scholar 

  2. Roder, H., Wagner, G., and Wüthrich, K. (1985) Biochemistry 24, 7407–7411.

    Article  PubMed  CAS  Google Scholar 

  3. Robertson, A. D. and Baldwin, R. L. (1991) Biochemistry 30, 9907–9914.

    Article  PubMed  CAS  Google Scholar 

  4. Woodward, C. K. and Hilton, B. D. (1979) Ann. Rev. Biophys. Bioeng. 8, 99–127

    Article  CAS  Google Scholar 

  5. Englander, S. W. and Kallenbach, N. R. (1984) Q. Rev. Biophys. 16, 521–655

    Article  Google Scholar 

  6. WĂĽthrich, K. (1986) NMR of Proteins and Nucleic Acids. Wiley, New York.

    Google Scholar 

  7. Robertson, A. D. and Markley, J. L. (1990) Biological Magnetic Resonance 9, 155–176.

    CAS  Google Scholar 

  8. McIntosh, L. P. and Dahlqmst, F. W. (1990) Q. Rev. Biophys. 23, 1–38.

    Article  PubMed  CAS  Google Scholar 

  9. Clore, G. M. and Gronenborn, A. M. (1991) Annu. Rev. Biophys. Chem. 20, 29–63.

    Article  CAS  Google Scholar 

  10. Paterson, Y., Englander, S W., and Roder, H. (1990) Science 249, 755–759.

    Article  PubMed  CAS  Google Scholar 

  11. Englander, S. W., Englander, J. J., McKinnie, R. E., Ackers, G. K., Turner, G. J., Westrick, J. A., and Gill, S. J. (1992) Science 256, 1684–1687.

    Article  PubMed  CAS  Google Scholar 

  12. Rosa, J. J. and Richards, F. M. (1981) J. Mol. Biol. 145, 835–851.

    Article  PubMed  CAS  Google Scholar 

  13. Kim, P. S. (1986) Methods Enzymol. 131, 136–156.

    Article  PubMed  CAS  Google Scholar 

  14. Englander, S. W. and Mayne, L. (1992) Annu. Rev Biophys. Biomol. Struct. 21, 243–265.

    Article  PubMed  CAS  Google Scholar 

  15. Tao, F., Fuchs, J., and Woodward, C. (1993) in Techniques in Protein Chemistry (Angeletti, R., ed.), Academic, New York, pp. 513–521.

    Google Scholar 

  16. Englander, S. W. and Poulsen, A. (1969) Biopolymers 7, 379–393.

    Article  CAS  Google Scholar 

  17. Aue, W. P., Bartholdi, E., and Ernst, R. R. (1976) J. Chem. Phys. 64, 2229–2246.

    Article  CAS  Google Scholar 

  18. Pedersen, T. G, Thomsen, N. K., Andersen, K. V., Madsen, J. C., and Paulsen, F M. (1993) J. Mol. Biol. 230, 651–660.

    Article  PubMed  CAS  Google Scholar 

  19. Chyan, C.-L., Wormald, C., Dobson, C. M., Evans, P. A., and Baum, J. (1993) Biochemistry 32, 5681–5691.

    Article  PubMed  CAS  Google Scholar 

  20. Lu, J. and Dahlquist, F. W. (1992) Biochemistry 31, 4749–4756.

    Article  PubMed  CAS  Google Scholar 

  21. Bax, A., Ikura, M., Kay, L. E., Torchia, D. A., and Tschudin, R. (1990) J. Magn. Resort. 86, 304–318.

    CAS  Google Scholar 

  22. Kainosho, M. and Tsuji, T. (1982) Biochemistry 21, 6273–6279.

    Article  PubMed  CAS  Google Scholar 

  23. Henry, G. D., Weiner, J. H., and Sykes, B. D. (1987) Biochemistry 26, 3626–3634.

    Article  PubMed  CAS  Google Scholar 

  24. Ferretti, J. A. and Weiss, G. H. (1989) Methods Enzymol. 176, 3–11.

    Article  PubMed  CAS  Google Scholar 

  25. Dempsey, C. E. (1986) Biochemistry 25, 3904–3911.

    Article  PubMed  CAS  Google Scholar 

  26. Wagner, G. and Wüthrich, K. (1982) J. Mol. Biol. 160, 343–361

    Article  PubMed  CAS  Google Scholar 

  27. Wand, A. J. and Englander, S. W. (1985) Biochemistry 24 5290–5294.

    Article  PubMed  CAS  Google Scholar 

  28. Kim, P. S. and Baldwin, R. L. (1982) Biochemistry 21, 1–5.

    Article  PubMed  CAS  Google Scholar 

  29. Radford, S. E., Buck, M., Toping, K. D., Dobson, C. M., and Evans, P. A. (1992) Proteins: Struct. Funct. Genet. 14, 237–248.

    Article  CAS  Google Scholar 

  30. Englander, J. J., Calhoun, D. B., and Englander, S. W. (1979) Anal. Biochem. 92, 517–524.

    Article  PubMed  CAS  Google Scholar 

  31. Schreier, A. A. and Baldwin, R. L. (1976) J. Mol. Biol. 105, 409–426.

    Article  PubMed  CAS  Google Scholar 

  32. Marion, D., Ikura, M., Tschudin, R., and Bax, A. (1989) J. Mugn. Reson. 85, 393–399.

    CAS  Google Scholar 

  33. Robertson, A. D., Purisima, E. O., Eastman, M. A., and Scheraga, H A. (1989) Biochemistry 28, 5930–5938.

    Article  PubMed  CAS  Google Scholar 

  34. Meadows, R. P., Nettesheim, D. G., Xu, R. X., Olejniczak, E. T., Petros, A. M., Holzman, T. F., Severin, J., Gubbins, E., Smith, H., and Fesik, S. W. (1993) Biochemistry 32, 754–765.

    Article  PubMed  CAS  Google Scholar 

  35. Baum, J., Dobson, C. M., Evans, P. A., and Hanley, C. (1989) Biochemistry 28, 7–13.

    Article  PubMed  CAS  Google Scholar 

  36. Hughson, F. M., Wright, P. E., and Baldwin, R. L. (1990) Science 249, 1544–1548.

    Article  PubMed  CAS  Google Scholar 

  37. Jeng, M. F., Englander, S. W., Elöve, G. A., Wand, A. J., and Roder, H. (1990) Biochemistry 29, 10,433–10,437.

    Article  PubMed  CAS  Google Scholar 

  38. Roder, H. (1989) Methods Enzymol. 176, 446–473.

    Article  PubMed  CAS  Google Scholar 

  39. Hvidt, A. and Nielsen, S. O. (1966) Adv. Prot. Chem. 21, 287–386.

    Article  CAS  Google Scholar 

  40. Mayo, S. L. and Baldwin, R. L. (1993) Science 262, 873–876

    Article  PubMed  CAS  Google Scholar 

  41. Loftus, D., Gbenle, G. O., Kim, P. S., and Baldwin, R. L. (1986) Biochemistry 25, 1428–1436.

    Article  PubMed  CAS  Google Scholar 

  42. Cash, D. J. and Hess, G. P. (1981) Anal. Biochem. 112, 39–51.

    Article  PubMed  CAS  Google Scholar 

  43. Fersht, A.R. and Jakes, R. (1975) Biochemistry 14, 3350–3356.

    Article  PubMed  CAS  Google Scholar 

  44. Bycroft, M., Matouschek, A., Kellis, J. J., Serrano, L., and Fersht, A. R. (1990) Nature 346, 488–490.

    Article  PubMed  CAS  Google Scholar 

  45. Dobson, C. M. (1991) Cibu Found. Symp. 161, 167–181.

    CAS  Google Scholar 

  46. Briggs, M. S. and Roder, H. (1992) Proc. Natl. Acad. Ski. USA 89, 2017–2021.

    Article  CAS  Google Scholar 

  47. Mullins, L. S., Pace, C. N., and Raushel, F. M. (1993) Biochemistry 32, 6152–6156.

    Article  PubMed  CAS  Google Scholar 

  48. Matouschek, A., Serrano, L., Meiering, E. M., Bycroft, M., and Fersht, A. R. (1992) J. Mol. Biol. 224, 837–845.

    Article  PubMed  CAS  Google Scholar 

  49. Radford, S. E., Dobson, C. M., and Evans, P. A. (1992) Nature 358, 302–307.

    Article  PubMed  CAS  Google Scholar 

  50. Udgaonkar, J. B. and Baldwin, R. L. (1988) Nature 335, 694–699.

    Article  PubMed  CAS  Google Scholar 

  51. Roder, H., Elöve, G. A., and Englander, S. W. (1988) Nature 335, 700–704.

    Article  PubMed  CAS  Google Scholar 

  52. Udgaonkar, J B. and Baldwin, R.L.(1990) Proc. Nut1 Acud.Sci. USA 87, 8197–8201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Scholtz, J.M., Robertson, A.D. (1995). Hydrogen Exchange Techniques. In: Shirley, B.A. (eds) Protein Stability and Folding. Methods in Molecular Biology™, vol 40. Humana Press. https://doi.org/10.1385/0-89603-301-5:291

Download citation

  • DOI: https://doi.org/10.1385/0-89603-301-5:291

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-301-6

  • Online ISBN: 978-1-59259-527-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics