Skip to main content

Site-Directed Mutagenesis to Study Protein Folding and Stability

  • Protocol
Book cover Protein Stability and Folding

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 40))

Abstract

In the early 1970s, recombinant DNA technology made in vitro manipulation of genetic information possible. In the early 198Os, advances in solid phase synthetic chemistry made the production of oligonucleotides of defined sequence rapid and economical. Since then, methods of site-directed mutagenesis (SDM) built on these advances have been refined to the point that unlimited variations of a gene sequence can be created given sufficient time. Furthermore, commercially available kits have opened the realm of site-directed mutagenesis to laboratories that are not specialists in DNA molecular biology. The ability to introduce specific mutations into a gene and then express and study the altered protein has provided a powerful experimental tool for studying the relationship between amino acid sequence and protein structure and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brandts, J. F. (1964) J. Am. Chem. Sot. 86, 4302–4314.

    Article  CAS  Google Scholar 

  2. Kauzmann, W. (1959) Adv. Protein Chem. 14, 1–63.

    Article  PubMed  CAS  Google Scholar 

  3. Tanford, C. (1962) J. Am. Chem. Sot. 84, 4240–4247.

    Article  CAS  Google Scholar 

  4. Tanford, C. (1970) Adv. Protein Chem. 24, 1–95.

    Article  PubMed  CAS  Google Scholar 

  5. Pantoliano, M. W., Whitlow, M., Wood, J. F., Dodd, S. W., Hardman, K. D., Rollence, M. L., and Bryan, P. N. (1989) Biochemistry 28, 7205–7213.

    Article  PubMed  CAS  Google Scholar 

  6. Leatherbarrow, R. J. and Fersht, A. R. (1986) Protein Eng. 1, 7–16.

    Article  PubMed  CAS  Google Scholar 

  7. Matthews, B. W. (1987) Biochemistry 26, 6885–6888.

    Article  PubMed  CAS  Google Scholar 

  8. Goldenberg, D. P. (1988) Ann. Rev. Biophys. Biophys. Chem. 17, 481–507.

    Article  CAS  Google Scholar 

  9. Alber, T. (1989) Ann. Rev. Biochem. 58, 765–798.

    Article  PubMed  CAS  Google Scholar 

  10. Wells, J. A., Ferrari, E., Henner, D. J., Estell, D. A., and Chen, E. Y. (1983) Nucleic Acids Res. 11, 7911–7925.

    Article  PubMed  CAS  Google Scholar 

  11. Vasantha, N., Thompson, L. D., Rhodes, C., Banner, C., Nagle, J., and Filpula, D. (1984) J. Bucteriol. 159, 811–819.

    CAS  Google Scholar 

  12. Fahnestock, S. R. and Fisher, K. E. (1987) Appl. Environ. Microbial. 53, 379–384.

    CAS  Google Scholar 

  13. Bryan, P., Alexander, P., Strausberg, S., Schwarz, F., Wang, L., Gilliland, G., and Gallagher, D. T. (1992) Biochemistry 31, 4937–4945.

    Article  PubMed  CAS  Google Scholar 

  14. DelMar, E., Largman, C., Brodnck, J., and Geokas, M (1979) Anal. Biochem. 99, 316–320.

    Article  PubMed  CAS  Google Scholar 

  15. Wiseman, T., Williston, S., Brandts, J. F., and Lin, L.-N. (1989) Anal. Biochem. 179, 131–137.

    Article  PubMed  CAS  Google Scholar 

  16. Gallagher, T. D., Bryan, P., and Gilliland, G. (1993) Proteins: Str. Funct. Gen. 16, 205–213.

    Article  CAS  Google Scholar 

  17. Matthews, B. W., Weaver, L. H., and Kester, W. R. (1974) J. Biol. Chem. 249, 8030–8044.

    PubMed  CAS  Google Scholar 

  18. Betzel, C., Teplyakov, A. V., Harutyunyan, E. H., Sanger, W., and Wilson, K. S. (1990) Protein Eng. 3, 161–172.

    Article  PubMed  CAS  Google Scholar 

  19. Gros, P., Kalk, K. H., and Hol, W. G. J. (1991) J. Biol. Chem. 266, 2953–2961.

    PubMed  CAS  Google Scholar 

  20. Ikemura, H., Takagi, H., and Inouye, M. (1987) J. Biol. Chem. 262, 7859–7864.

    PubMed  CAS  Google Scholar 

  21. Finzel, B. C., Howard, A. J., and Pantoliano, M. W. (1986) J. Cell. Biochem. Suppl. 10A, 272.

    Google Scholar 

  22. Pantoliano, M. W., Whitlow, M., Wood, J. P., Rollence, M. L., Finzel, B. C., Gilliland, G., Poulos, T. L., and Bryan, P. N. (1988) Biochemistry 27, 831l–8317.

    Article  Google Scholar 

  23. Bryan, P. N., Rollence, M. L., Pantoliano, M. W., Wood, J., Finzel, B. C., Gilliland, G. L., Howard, A. J., and Poulos, T. L. (1986) Prot. Str. Funct. Gen. 1, 326–334.

    Article  CAS  Google Scholar 

  24. Jones, T. A. (1978) J. Appl. Crystallogr. 11, 268–272.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Bryan, P.N. (1995). Site-Directed Mutagenesis to Study Protein Folding and Stability. In: Shirley, B.A. (eds) Protein Stability and Folding. Methods in Molecular Biology™, vol 40. Humana Press. https://doi.org/10.1385/0-89603-301-5:271

Download citation

  • DOI: https://doi.org/10.1385/0-89603-301-5:271

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-301-6

  • Online ISBN: 978-1-59259-527-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics