Skip to main content

Urea and Guanidine Hydrochloride Denaturation Curves

  • Protocol
Protein Stability and Folding

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 40))

Abstract

Proteins are synthesized as a linear chain of amino acids. In order to become biologically active, a protein must fold and adopt one out of an enormous number of possible conformations. This conformation, which we will refer to as the native state, exists in solution as a very compact, highly ordered structure. This native state structure results from a delicate balance between large and opposing forces. In order to form the native state, the forces that favor the unfolded state (mainly conformational entropy) must be overcome by the covalent and noncovalent interactions favoring the folded protein (see Chapter 1). Under physiological conditions the native (folded) and the denatured (unfolded) states of a protein are in equilibrium. The free energy change, △G, for the equilibrium reaction

(1)

is referred to as the conformational stability of a protein. The determinants of native state stability in aqueous solutions are the amino acid sequence of the protein as well as the variable conditions of pH, temperature, and the concentration of salts and ligands (1, 2). Although the native conformation is essential for activity, the conformational stability is remarkably low. The native state of most naturally occurring proteins is only about 5–15 kcal/mol more stable than its unfolded conformations (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alber, T. (1989) Annu. Rev. Biochem. 58, 765–798.

    Article  PubMed  CAS  Google Scholar 

  2. Pace, C. N. (1990) Trends Bichem. Sci. 15, 14–17.

    Article  CAS  Google Scholar 

  3. Pace, C. N. (1975) Crit. Rev. Biochem. 3, 1–43.

    Article  CAS  Google Scholar 

  4. Hagel, P., Gerding, J. J. T., Feiggen, W., and Bloemendal, H. (1971) Biochim. Biophys. Acta. 243, 366–370.

    PubMed  CAS  Google Scholar 

  5. Stark, G. R. (1965) Biochemistry 4, 1030–1036.

    Article  PubMed  CAS  Google Scholar 

  6. Kawahara, K. and Tanford, C. (1966) J. Biol. Chem. 241, 3228–3232.

    PubMed  CAS  Google Scholar 

  7. Warren, J. R. and Gordon, J. A. (1966) J. Phys. Chem. 67, 1524–1527.

    Google Scholar 

  8. Nozaki, Y. (1972) in Methods in Enzymology, vol. 26 (Hirs, C. H. W. and Timasheff, S. N., eds.), Academic, New York, pp. 43–50.

    Google Scholar 

  9. Canter, C. R. and Timasheff, S. N. (1982) in The Proteins, vol. 5 (Neurath, H. and Hill, R. L., eds.), Academic, Orlando, FL, pp. 145–306.

    Google Scholar 

  10. Creighton, T. E. (1978) Prog. Biophys. Mol. Biol. 33, 231–236.

    Article  PubMed  CAS  Google Scholar 

  11. Shirley, B. A. (1992) in Stability of Protein Pharmaceuticals, Part A: Chemical and Physical Pathways of Protein Degradation (Ahern, T. J. and Manning, M. C., eds.), Plenum, New York, pp. 167–194.

    Google Scholar 

  12. Shirley, B. A., Stanssens, P., Steyaert, J., and Pace, C. N. (1989) J. Biol. Chem. 264, 11,621–11,625.

    PubMed  CAS  Google Scholar 

  13. Pace, C. N., Shirley, B. A., and Thomson, J. A. (1989) in Protein Structure: A Practical Approach (Creighton, T. E., ed.), IRL, Oxford, pp. 31l–330.

    Google Scholar 

  14. Tanford, C. (1964) J. Am. Chem. Soc. 86, 2050–2090.

    Article  CAS  Google Scholar 

  15. Greene, R. F., Jr. and Pace, C. N. (1974) J. Biol. Chem. 249, 5388–5393.

    PubMed  CAS  Google Scholar 

  16. Schellman, J. A. (1978) Biopolymers 17, 1305–1322.

    Article  CAS  Google Scholar 

  17. Schellman, J. A. (1987) Biopolymers 26, 549–559.

    Article  PubMed  CAS  Google Scholar 

  18. Thomson, J. A., Shirley, B. A., Grimsley, G. R., and Pace, C. N. (1989) J. Biol. Chem 264, 11,614–11,620.

    PubMed  CAS  Google Scholar 

  19. Pace, C. N. (1986) in Methods in Enzymology, vol. 131 (Hirs, C. H. W. and Timashef, S. N., eds.), Academic, New York, pp. 266–280.

    Google Scholar 

  20. Brandts, J. F. (1969) in Structure and Stability of Biological Macromolecules (Timasheff, S. N. and Fasman, G. D., eds.), Marcel Dekker, New York, pp. 213–290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Shirley, B.A. (1995). Urea and Guanidine Hydrochloride Denaturation Curves. In: Shirley, B.A. (eds) Protein Stability and Folding. Methods in Molecular Biology™, vol 40. Humana Press. https://doi.org/10.1385/0-89603-301-5:177

Download citation

  • DOI: https://doi.org/10.1385/0-89603-301-5:177

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-301-6

  • Online ISBN: 978-1-59259-527-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics