Cryopreservation of Seeds

  • Hugh W. Pritchard
Part of the Methods in Molecular Biology™ book series (MIMB, volume 38)


Storage of seeds is arguably the most effective and efficient method for the ex situ preservation of plant genetic resources. Low storage costs, combined with ease of seed distribution and regeneration of whole plants from genetically diverse material, offer distinct advantages for the storage for conservation of seeds compared with other types of plant tissues, such as meristems and pollen.


Optimum Moisture Content Seed Longevity Recalcitrant Seed Seed Moisture Content Orthodox Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Dickie, J. B., Ellis, R. H., Kraak, H. L., Ryder, K., and Tompsett, P. B. (1990) Temperature and seed storage longevity. Ann. Bat 65, 197–204.Google Scholar
  2. 2.
    Stanwood, P. C. and Bass, L. N. (1981) Seed germplasm preservation using liquid nitrogen. Seed Sci. Technol 9, 423–437.Google Scholar
  3. 3.
    Stanwood, P. C. (1985) Cryopreservation of seed germplasm for genetic conservation, in Cryopreservution of Plant Cells and Organs (Kartha, K. K., ed.), CRC, Boca Raton, FL, pp. 199–226.Google Scholar
  4. 4.
    Pritchard, H. W. and Seaton, P. T. (1993) Orchid seed storage. historical perspective, current status, and future prospects for long-term conservation. Selbyana 14, 89–104.Google Scholar
  5. 5.
    Roos, E. E. and Stanwood, P. C. (1981) Effects of low temperature, cooling rate, and moisture content on seed germination of lettuce. J. Am. Soc. Hort. Sci. 106, 30–34.Google Scholar
  6. 5a.
    Iriondo, J. M., Pérez, C., and Pérez-García, F. (1992) Effect of seed storage in liquid nitrogen on germination of several crop and wild species. Seed Sci. Technol. 20, 165–171.Google Scholar
  7. 6.
    Brown, H. T. and Escombe, F. (1897–1898) Note on the influence of very low temperatures on the germinative power of seeds. Proc. Royal Soc. Land. 62, 160–165.CrossRefGoogle Scholar
  8. 7.
    Sakai, A. and Noshiro, M. (1975) Some factors contributing to the survival of crop seeds cooled to the temperature of liquid nitrogen, in Crop Genettc Resources for Today and Tomorrow (Frankel, O. H. and Hawkes, J C., eds.), Cambridge University Press, Cambridge, UK, pp. 317–326.Google Scholar
  9. 8.
    Stanwood, P. C. and Roes, E. E. (1979) Seed storage of several horticultural species in liquid nitrogen (/t-196°C). Hort. Sci. 14, 628–630.Google Scholar
  10. 9.
    Styles, E. D., Burgess, J. M, Mason, C., and Huber, B. M. (1982) Storage of seed in liquid nitrogen. Cryobiology 19, 195–199.PubMedCrossRefGoogle Scholar
  11. 10.
    Pence, V. C. (1991) Cryopreservation of seeds of Ohio native plants and related species. Seed Sci. Technol. 19, 235–251.Google Scholar
  12. 10a.
    Touchell, D. H. and Dixon, K. W. (1993) Cryopreservation of seed of Western Australian native species. Biodiversity Conserv. 2, 594–602.CrossRefGoogle Scholar
  13. 11.
    Al-Madeni, M. A. and Tisserat, B. (1986) Survival of palm seeds under cryogenic conditions. Seed Sci. Technol. 14, 79–85.Google Scholar
  14. 12.
    Pritchard, H. W. (1984) Liquid nitrogen preservation of terrestrial and epiphytic orchid seed. Cryo-Lett. 5, 295–300.Google Scholar
  15. 13.
    Pritchard, H. W. and Prendergast, F. G. (1986) Effects of desiccation and cryopreservation on the in vitro viability of embryos of the recalcitrant seed species Araucaria hunsteinii K. Schum. J. Exp. Bat. 37, 1388–1397.CrossRefGoogle Scholar
  16. 14.
    Pence, V. C (1992) Desiccation and the survival of Aesculus, Castanea and Quercus embryo axes through cryopreservation. Cryobiology 29, 391–399.CrossRefGoogle Scholar
  17. 15.
    Grout, B. W. W. (1979) Low temperature storage of imbibed tomato seeds: a model for recalcitrant seed storage. Cryo-Lett. 1, 71–76.Google Scholar
  18. 16.
    de Boucaud, M.-T. and Cambecedes, J. (1988) The use of 1,2-propanediol for cryopreservation of recalcitrant seeds: the model case of Zea muys imbibed seeds. Cryo-Lett. 9, 94–101.Google Scholar
  19. 17.
    International Board for Plant Genetic Resources (1991) Elsevier’s Dictionary of Plant Genetic Resources. Elsevier, Amsterdam.Google Scholar
  20. 18.
    Wexler, A. (1993-1994) Constant humidity solutions, in CRC Handbook of Chemistry and Physics, 74th ed. (Lide, D. R., ed.-in-chief), CRC, Boca Raton, FL, pp. 15–25.Google Scholar
  21. 19.
    Cromarty, A. S., Ellis, R. H., and Roberts, E. H. (1985) Design of Seed Storage Facilities for Genetic Conservation International Board for Plant Genetic Resources, RomeGoogle Scholar
  22. 20.
    Ellis, R. H., Hong, T. D., and Roberts, E. H (1985) Handbook of Seed Technology for Genebanks. Volume I. Principles and Methodology. International Board for Plant Genetic Resources, RomeGoogle Scholar
  23. 21.
    Ellis, R. H., Hong, T. D., and Roberts, E. H. (1985) Handbook of Seed Technology for Genebanks. Volume II. Compendium of Specific Germination Information and Test Recommendations. International Board for Plant Genetic Resources, Rome.Google Scholar
  24. 22.
    Vertucci, C. W. (1990) Calorimetric studies of the state of water in seed tissues. Biophys. J. 58 1463–1471.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 23.
    Eckey, E. W. (1954) Vegetable Fats and Oils. Reinhold Publishing Corporation, New York.Google Scholar
  26. 24.
    Earle, F. R. and Jones, Q. (1962) Analyses of seed samples from 113 plant families. Econ. Bot. 16, 221–250.CrossRefGoogle Scholar
  27. 25.
    Zhang, B., Fu, J.-R., and Xu, S. (1990) Studies on cryopreservation of seeds of crops and vegetables. Acta Scientiarum Naturalium Universitatis Sunyatseni 29, 115–121.Google Scholar
  28. 26.
    Vertucci, C. W (1989) Effects of cooling rate on seeds exposed to liquid nitrogen temperatures. Plant Physiol 90, 1478–1485PubMedCentralPubMedCrossRefGoogle Scholar
  29. 27.
    Zewdie, M. and Ellis, R. H. (1991) Survival of tef and niger seeds following exposure to sub-zero temperatures at various moisture contents. Seed Sci. Technol 19, 309–317.Google Scholar
  30. 27a.
    Vertucci, C. W. and Roos, E. E. (1993) Theoretical basis of protocols for seed storage II. The influence of temperature on opttmal moisture levels. Seed Sci. Res. 3, 201–213.Google Scholar
  31. 28.
    Pritchard, H. W., Manger, K. R., and Prendergast, F. G. (1988) Changes in Trifolium arvense seed quality following alternating temperature treatment using liquid nitrogen. Ann. Bot. 62, 1–11.Google Scholar
  32. 29.
    Stanwood, P. C. (1980) Tolerance of crop seeds to cooling and storage in liquid nitrogen (/t-196°C). J. Seed Technol. 5, 26–31.Google Scholar
  33. 30.
    Harrison, B. J. and Carpenter, R. (1977) Storage of Allium cepa seed at low temperatures. Seed Sci. Technol. 5, 699–702.Google Scholar
  34. 31.
    Vertucci, C. W. (1989) Relationship between thermal transitions and freezing injury in pea and soybean seeds. Plant Physiol. 90, 1121–1128.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 32.
    Jordan, J. L., Jordan, L. S., and Jordan, C M. (1982) Effects of freezing to /t-196°C and thawing on Setaria lutescens seeds. Cryobiology 19, 435–442PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • Hugh W. Pritchard
    • 1
  1. 1.Jodrell LaboratoryRoyal Botanic GardensKew, ArdinglyUK

Personalised recommendations