Molecular Analysis of Chromosome Aberrations

In Situ Hybridization
  • Peter Lichter
  • Thomas Ried
Part of the Methods in Molecular Biology™ book series (MIMB, volume 29)


In situ hybridization provides a means of analyzing chromosomal aberrations in a very direct way. Nucleic acid probes are hybridized to chromosomal preparations, and the site of specific hybridization is detectable by various procedures. Although in the 1970s and 1980s isotopic detection was the preferred technique, new developments in the protocols of nonisotopic in situ hybridization resulted in an increasing popularity of this procedure since the late 1980s. This development is owing to the distinct advantages of nonradioactive in situ hybridization techniques, such as increased speed of the procedure, higher signal resolution, and most of all the potential to combine several nonisotopic techniques to delineate a number of chromosomal target regions simultaneously. These developments have been discussed in more detail elsewhere (see, e.g., refs. 1, 2, 3).


Down Syndrome Wash Buffer Metaphase Chromosome Nucleic Acid Probe Column Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lichter, P. and Ward, D C (1990) Is non-isotopic in situ hybridization finally coming of age? Nature 345, 93–95PubMedCrossRefGoogle Scholar
  2. 2.
    Lichter, P, Boyle, A L, Cremer, T, and Ward, D C (1991) Analysis of genes and chromosomes by non-isotopic in situ hybridization Genet Anal.Techn Appl. 8, 24–35Google Scholar
  3. 3.
    Raap, A K., Dirks, R W. Jiwa, N M., Nederlof, P M, and van der Ploeg, M (1990) In situ hybridization with hapten-modified DNA probes, in Modern Pathology of AIDS and Other Retroviral Infections (Racz, P, Haase, A. T., and Gluckman, J. C, eds.) Karger, Basel, pp 17–28.Google Scholar
  4. 4.
    Narayanswami, S and Hamkalo, B. A (1991) DNA sequence mapping using electron microscopy Genet Anal. Techn. Appl 8, 14–23Google Scholar
  5. 5.
    Manuelidis, L (1985) In situ detection of DNA sequences using biotinylated probes Focus 7, 4–8Google Scholar
  6. 6.
    Klever, M, Grond-Ginsbach, C, Scherthan, H, and Schroeder-Kurth, T M (1991) Chromosomal in situ suppression hybridization after Giemsa banding. Hum Genet 86, 484–486PubMedCrossRefGoogle Scholar
  7. 7.
    Arnold, N, Bhatt, M, Ried, T, Ward, D C, and Wienberg, J (1992) Fluorescence in situ hybridization on banded chromosomes, in Techniques and Methods in Molecular Biology. Non-Radioactive Labeling and Detection of Biomolecules (Kessler, C, ed ) Springer Verlag, Berlin, in pressGoogle Scholar
  8. 8.
    Lichter, P. and Cremer, T. (1991) Chromosome analysis by non-isotopic in situ hybridization, in Human Cytogenetics: A Practical Approach (Rooney, D E and Czepulkowski, B. H, eds ) IRL, Oxford, pp 157–192.Google Scholar
  9. 9.
    Cherif, D., Julier, C, Delattre, O, Derré, J., Lathrop, G. M, and Berger, R (1990) Simultaneous localization of cosmids and chromosome R-banding by fluorescence microscopy application to regional mapping of human chromosome II. Proc Natl Acad. Sci USA 87, 6639–6643.PubMedCrossRefGoogle Scholar
  10. 10.
    Fan, Y.-S, Davis, L M, and Shows, T. B (1990) Mapping small DNA sequences by fluorescence in situ hybridization directly on banded metaphase chromosomes. Proc Natl. Acad Sci USA 87, 6223–6227PubMedCrossRefGoogle Scholar
  11. 11.
    Takahashi, E., Hon, T, O’Connell, P., Leppert, M, and White, R (1990) R-banding and nonisotopic in situ hybridization: precise localization of the human type II collagen gene (COL2A1). Hum. Genet 86, 14–16PubMedCrossRefGoogle Scholar
  12. 12.
    Lichter, P, Tang, C. C, Call, K, Hermanson, G., Evans, G A., Housman, D., and Ward, D C (1990) High resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247, 64–69.PubMedCrossRefGoogle Scholar
  13. 13.
    Boyle, A L, Ballard, S G., and Ward, D. C (1990) Differential distribution of LINE and SINE sequences in the mouse genome-chromosome karyotyping by fluorescent in situ hybridization Proc. Natl Acad Sci USA 87, 7757–7761PubMedCrossRefGoogle Scholar
  14. 14.
    Landegent, J E, Jansen, in de Wal, N, Dirks, R W., Baas, F., and van der Ploeg, M (1987) Use of whole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization Hum Genet. 77, 366–370PubMedCrossRefGoogle Scholar
  15. 15.
    Lichter, P., Cremer, T., Borden, J, Manuelidis, L, and Ward, D C (1988) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries Hum Genet 80, 224–234PubMedCrossRefGoogle Scholar
  16. 16.
    Pinkel, D, Landegent, J, Collins, C, Fuscoe, J., Segraves, R, Lucas, J, and Gray, J W (1988) Fluorescence in situ hybridization with human chromosome-specific libraries detection of trisomy 21 and translocations of chromosome 4. Proc. Natl Acad Sci. USA 85, 9138–9142PubMedCrossRefGoogle Scholar
  17. 17.
    Collins, C, Kuo, W. L., Segraves, R., Fuscoe, J., Pinkel, D., and Gray, J (1991) Genomics 11, 997–1006PubMedCrossRefGoogle Scholar
  18. 18.
    Cremer, T., Lichter, P., Borden, J., Ward, D. C, and Manuelidis, L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome specific library probes. Hum. Genet 80, 235–246PubMedCrossRefGoogle Scholar
  19. 19.
    Lichter, P, Cremer, T, Tang, C C, Watkins, P C, Manuelidis, L, and Ward, D C. (1988) Rapid detection of human chromosome 21 aberrations by in situ hybridization Proc. Natl. Acad Sci USA 85, 9664–9668.PubMedCrossRefGoogle Scholar
  20. 20.
    Jauch, A., Daumer, C, Lichter, P, Murken, J., Schroeder-Kurth, T., and Cremer, T (1990) Chromosomal in situ suppression hybridization of human gonosomes and autosomes and its use in clinical cytogenetics. Hum Genet 85, 145–150PubMedCrossRefGoogle Scholar
  21. 21.
    Lengauer, C, Riethman, H., and Cremer, T (1990) Painting of human chromosomes generated from hybrid cell lines by PCR with Alu and LI primers. Hum. Genet 86, 1–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Lichter, P, Ledbetter, S A., Ledbetter, D H., and Ward, D C (1990) Fluorescence in situ hybridization with Alu and L1 polymerase chain reaction probes for rapid characterization of human chromosomes in hybrid cell lines. Proc. Natl Acad Sci USA 87, 6634–6638.PubMedCrossRefGoogle Scholar
  23. 23.
    Lengauer, C, Green, E. D, and Cremer, T. (1992) Fluorescence in situ hybridization of YAC clones after Alu-PCR amplification Genomics, 826–828.Google Scholar
  24. 24.
    Barr, M. L. and Bertram, E. G. (1949) A morphological distinction between neurons of the male and female, and the behaviour of the nuleolar satellite during accelerated nuleioprotein synthesis. Nature 163, 676–677.PubMedCrossRefGoogle Scholar
  25. 25.
    Pearson, P. L., Bobrow, M, and Vosa, C. G (1970) Technique for identifying Y chromosomes in human interphase nuclei. Nature 226, 78–80PubMedCrossRefGoogle Scholar
  26. 26.
    Cremer, T, Landegent, J., Bruckner, A., Scholl, H. P, Schardin, M., Hager, H D., Devilee, P, Pearson, P., and van der Ploeg, M (1986) Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs with radioactive and nonradioactive in situ hybridization techniques, diagnosis of trisomy 18 with probe LI 84. Hum Genet 74, 346–352PubMedCrossRefGoogle Scholar
  27. 27.
    Tkachuk, D C, Pinkel, D, Kuo, W-L, Weier, H-U, and Gray, J W. (1991) Clinical applications of fluorescence in situ hybridization. Genet. Anal. Techn. Appl. 8, 67–74Google Scholar
  28. 28.
    Lichter, P, Jauch, A., Cremer, T, and Ward, D C (1990) Detection of Down syndrome by in situ hybridization with chromosome 21 specific DNA probes, in Molecular Genetics of Chromosome 21 and Down Syndrome (Patterson, D., ed ) Liss, New York, pp 69–78Google Scholar
  29. 29.
    Lux, S. E, Tse, W. T., Menninger, J C, John, K. M., Harris, P., Shalev, O., Chilcote, R. R, Marchesi, S. L, Watkins, P C, Bennett, V, Mcintosh, S, Collins, F S., Francke, U., Ward, D C, and Forget, B. G. (1990) Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8 Nature 345, 736–739PubMedCrossRefGoogle Scholar
  30. 30.
    Ried, T, Mahler, V, Vogt, P, Blonden, L, van Ommen, G. J. B., Cremer, T, and Cremer, M (1990) Carrier detection by in situ suppression hybridizationwith cosmid clones of the Duchenne/Becker muscular dystrophy (DMD/BMD)-locus. Hum Genet. 85, 581–586PubMedCrossRefGoogle Scholar
  31. 31.
    Rowley, J D, Diaz, M O, Espinosa, R, III, Patel, YD., van Melle, E, Ziemin, S., Taillon-Miller, P., Lichter, P, Evans, G A, Kersey, J H., Ward, D C, Domer, P H., and Le Beau, M M (1990) Mapping chromosome band 1 lq23 in human acute leukemia with biotinylated probes: identification of 1 lq23 translocation breakpoints with a yeast artificial chromosome Proc Natl Acad Sci. USA 87, 9358–9362PubMedCrossRefGoogle Scholar
  32. 32.
    Stilgenbauer, S., Dohner, H, Bulgay-Mórschel, M., Weitz, S., Bentz, M., and Lichter, P. (1993) Retinoblastoma gene deletion in chronic lymphoid leukemias’ a combined metaphase and interphase cytogenetic study. Blood 81, 2118–2124PubMedGoogle Scholar
  33. 33.
    Lupski, J R., Montes de Oca-Luna, R., Slaugenhaupt, S, Pentao, L, Guzzetta, V, Trask, B J, Saucedo-Cardenas, O, Barker, D F, Killian, J. M, Garcia, C. A, Chakravarti, A, and Patel, P I (1991) DNA duplication associated with Charcot-Mane-Tooth disease type 1A. Cell 66, 219–232PubMedCrossRefGoogle Scholar
  34. 34.
    Ried, T., Lengauer, C, Cremer, T, Wiegant, J., Raap, A K., van der Ploeg, M, Groitl, P., and Lipp, M. (1992) Specific metaphase and interphase detection of the breakpoint region in 8q24 of Burkitt lymphoma cells by triple color fluorescence in situ hybridization Genes, Chromosomes & Cancer 4, 69–74CrossRefGoogle Scholar
  35. 35.
    Dauwerse, J G, Kievits, T, Beverstock, G. C, van der Keur, D., Smit, E, Wessels, H W, Hagemeijer, A, Pearson, P L., van Ommen, G-J. B, and Breuning, M H. (1990) Rapid detection of chromosome 16 inversion in acute nonlymphocytic leukemia, subtype M4: regional localization of the breakpoint in 16p Cytogenet Cell Genet 53, 126–128.PubMedCrossRefGoogle Scholar
  36. 36.
    Arnoldus, E P J, Wiegant, J, Noordemeer, I A., Wessels, J W., Beverstock, G C, Grosveld, G C, van der Ploeg, M., and Raap, A K. (1990) Detection of the Philadelphia chromosome in interphase nuclei Cytogenet Cell Genet 54, 108–111.PubMedCrossRefGoogle Scholar
  37. 37.
    Tkachuk, D., Westbrook, C, Andreef, M., Donlon, T., Cleary, M., Suranarayan, K., Homge, M., Redner, A, Gray, J., and Pinkel, D. (1990) Detection of BCR-ABL fusion in chronic myelogeneous leukemia by two-color fluorescence in situ hybridization. Science 250, 559–562PubMedCrossRefGoogle Scholar
  38. 38.
    Nederlof, P. M, Robinson, D., Abuknesha, R., Wiegant, J., Hopman, A H. N., Tanke, H J, and Raap, A K (1989) Three-color fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences Cytometry 10, 20–27.PubMedCrossRefGoogle Scholar
  39. 39.
    Nederlof, P M, van der Flier, S, Wiegant, J., Raap, A. K, Tanke, H J, Ploem, J. S., and van der Ploeg, M. (1990) Multiple fluorescence in situ hybridization Cytometry 11, 126–131PubMedCrossRefGoogle Scholar
  40. 40.
    Ried, T., Baldini, A., Rand, T C, and Ward, D. C. (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc. Natl. Acad Sci. USA 89, 1388–1392PubMedCrossRefGoogle Scholar
  41. 41.
    Emmerich, P., Jauch, A, Hofmann, M-C, Cremer, T, and Walt, H. (1989) Interphase cytogenetics in paraffin embedded sections from human testiculargerm cell tumor xenografts and in corresponding cultured cells. Lab. Investigation 61, 235–242Google Scholar
  42. 42.
    Hopman, A. H N, Ramaekers, F C. S., Raap, A K, Beck, J L. M, Devilee, P., van der Ploeg, M, and Vooijs, G P. (1988) In situ hybridization as a tool to study numerical chromosome aberrations in solid bladder tumors. Histochemistry 89, 307–316PubMedCrossRefGoogle Scholar
  43. 43.
    Hopman, A H. N, Poddighe, P J, Smeets, W A. G B., Moesker, O, Beck, J L. M, Vooijs, G P, and Ramaekers, F. C S. (1989) Detection of numerical chromosome aberrations in bladder cancer by in situ hybridization. Am J Pathol. 135, 1105–1117PubMedGoogle Scholar
  44. 44.
    Arnoldus, E. P J, Noordermeer, I. A, Peters, A C B, Voormolen, J. H. C, Bots, G. T A. M, Raap, A K, and van der Ploeg, M. (1991) Interphase cytogenetics of brain tumors. Genes, Chromosomes & Cancer 3, 101–107.CrossRefGoogle Scholar
  45. 45.
    Baldino, F. and Lewis, M. E (1989) Non-radioactive in situ hybridization histochemistry with digoxigenin-dUTP labeled oligonucleotides, in Methods in Neuroscience (Conn, P. M, ed ) Academic, New York.Google Scholar
  46. 46.
    Lo, Y.-M D., Mehal, W. Z, and Fleming, K. A (1988) Rapid production of vector-free biotinylated probes using the polymerase chain reaction Nucleic Acids Res. 16, 8719PubMedCrossRefGoogle Scholar
  47. 47.
    Weier, H.-U G., Segraves, R, Pinkel, D, and Gray, J. W (1990) Synthesis of Y chromosome-specific labeled DNA probes by in vitro DNA amplification J. Histochem Cytochem 38, 421–426.PubMedGoogle Scholar
  48. 48.
    Langer, P. R., Waldrop, A A., and Ward, D C. (1981) Enzymatic synthesis of biotin-labeled polynucleotides novel nucleic acid affinity probes. Proc. Natl. Acad. Sci. USA 78, 6633–6637.PubMedCrossRefGoogle Scholar
  49. 49.
    Albertson, D. G (1985) Mapping muscle protein genes by in situ hybridization using biotin labeled probes EMBO J 4, 2493–2498PubMedGoogle Scholar
  50. 50.
    Lawrence, J. B. and Singer, R H (1985) Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acids Res 13, 1777–1799.PubMedCrossRefGoogle Scholar
  51. 51.
    Lawrence, J. B., Villnave, C A., and Singer, R. H (1988) Interphase chromatin and chromosome gene mapping by fluorescence detection of in situ hybridization reveals the presence and orientation of two closely integrated copies of EBV in a human lymphoblastoid cell line Cell 52, 51–61.PubMedCrossRefGoogle Scholar
  52. 52.
    Pinkel, D., Straume, T., and Gray, J. W. (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl. Acad. Sci USA 83, 2934–2938PubMedCrossRefGoogle Scholar
  53. 53.
    Raap, A. K, Marijnen, J G. J, Vrolijk, J, and van der Ploeg, M (1986) Dena-turation, renaturation, and loss of DNA during in situ hybridization procedures Cytometry 7, 235–242PubMedCrossRefGoogle Scholar
  54. 54.
    Ried, T, Lengauer, C, Lipp, M., Fischer, C, Cremer, C, and Ward, D. C (1993) DNA and Cell Biology, in press.Google Scholar

Copyright information

© Humana Press Inc, Totowa, NJ 1994

Authors and Affiliations

  • Peter Lichter
    • 1
  • Thomas Ried
    • 2
  1. 1.Forschungsschwerpunkt Angewandte TumorvirologieDeutsches KrebsforschungszentrumHeidelbergGermany
  2. 2.Department of GeneticsYale University School of MedicineNew Haven

Personalised recommendations