Skip to main content

Part of the book series: Methods in Molecular Biology ((MIMB,volume 37))

Abstract

The large size, resilience, and high translational capacity of the fullgrown Xenopus oocyte has made it a widely used system for the translation of microinjected natural and synthetic mRNAs. The injected and endogenous mRNAs compete for the oocyte translational machinery in a process that normally results in the translation of at least a fraction of the injected mRNA and in a concomitant decrease in the synthesis of endogenous proteins (1). The injected oocytes can survive in vitro for long periods in simple salt media, and a single oocyte can synthesize nanogram amounts of foreign protein/hour, This often allows the analysis to be performed on the material obtained from one or few oocytes. Additionally, the heterologous polypeptides can be subjected to various and posttranslational processing steps (including glycosylation, subunit assembly, movement along the secretory pathway, proteolytic processing, phosphorylation, acetylation, hydroxylation, amidation) many of which do not occur in the standard cell-free translation systems. Because of these and other characteristics, Xenopus oocytes have been successfully used in situations when more than the mere translation of the mRNA was required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Richter, J. D. and Smith, L. D. (1981) Differential capacity for translation and lack of competition between mRNAs that segregate to free and membrane bound poly-somes. Cell 27, 183–191.

    Article  PubMed  CAS  Google Scholar 

  2. Kay, B. K. and Peng, H. eds. (1991) Xenopus laevis: Practical Uses in Cell and Molecular Biology. Academic, San Diego.

    Google Scholar 

  3. Dumont, J. N. (1972) Oogenesis in Xenopus luevis (Daudin) J. Morphol. 136, 153–180.

    Article  PubMed  CAS  Google Scholar 

  4. Smith, L. D., Xu, W., and Varnold, R. L. (1991) Oogenesis and oocyte isolation, in Xenopus laevis: Practical Uses in Cell and Molecular Biology (Kay, B. K. and Peng, H. eds.), Academic, San Diego, pp. 45–58.

    Chapter  Google Scholar 

  5. Drummond, D. R., McCrae, M. A., and Colman, A. (1985) Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes. J. Cell Biol. 100, 1148–1156.

    Article  PubMed  CAS  Google Scholar 

  6. Ceriotti, A. and Colman, A. (1988) Binding to membrane proteins within the endoplasmic reticulum cannot explain the retention of the glucose-regulated protein GRP78 in Xenopus oocytes. EMBO J. 7, 633–638.

    PubMed  CAS  Google Scholar 

  7. Goldin, A. L. (1991) Expression of ion channels by injection of mRNA into Xenopus oocytes, in Xenopus laevis: Practical Uses in Cell and Molecular Biology (Kay, B. K. and Peng, H. eds.) Academic, San Diego, pp. 487–508.

    Chapter  Google Scholar 

  8. Vitale, A., Zoppè, M., Fabbrini, M. S., Genga, A., Rivas, L., and Bollini, R. (1989) Synthesis of lectin-like protein in developing cotyledons of normal and phytohe-magglutinin-deficient Phaseolus vulgaris. Plant Physiol. 90, 1015–1021.

    Article  CAS  Google Scholar 

  9. Baranski, T. J., Faust, P. L., and Kornfeld, S. (1990) Generation of a lysosomal enzyme targeting signal in the secretory protein pepsinogen. Cell 63, 281–291.

    Article  PubMed  CAS  Google Scholar 

  10. Vitale, A., Sturm, A, and Bollini, R. (1986) Regulation of processing of a plant glycoprotein in the Golgi complex: a comparative study using Xenopus oocytes. Pluntu. 169, 108–116.

    Article  CAS  Google Scholar 

  11. Woodland, H. R. (1979) The modification of stored histones H3 and H4 during the oogenesis and early development of Xenopus laevis. Dev. Biol. 68, 360–370.

    Article  CAS  Google Scholar 

  12. Leaf, D. S., Roberts, S. J., Gerhart, J. C., and Moore, H. (1990) The secretory pathway is blocked between the truns-Golgi and the plasma membrane during meiotic maturation in Xenopus oocytes. Dev. Biol. 141, 1–12.

    Article  PubMed  CAS  Google Scholar 

  13. Soreq, H. and Miskin, R. (1981) Secreted proteins in the medium of microinjected Xenopus oocytes are degraded by oocyte proteases. FEBS Lett. 128, 305–310.

    Article  PubMed  CAS  Google Scholar 

  14. Valle, G., Besley, J., and Colman, A. (1981) Synthesis and secretion of mouse immunoglobulin chains from Xenopus oocytes. Nature 291, 338–340.

    Article  PubMed  CAS  Google Scholar 

  15. Faust, P. L., Wall, D. A., Perara, E., Lingappa, V. R., and Kornfeld, S. (1987) Expression of human cathepsin D in Xenopus oocytes: phosphorylation and intracellular targeting. J. Cell Biol. 105, 1937–1945.

    Article  PubMed  CAS  Google Scholar 

  16. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  17. Tate, S. S., Urade, R., Micanovic, R., Gerber, L., and Udenfriend, S (1990) Secreted alkaline phosphatase: an internal standard for expression of injected mRNAs in the Xenopus oocyte. FASEB J. 4, 227–231.

    PubMed  CAS  Google Scholar 

  18. Fabbrini, M. S., Zoppè, M., Bollini, R., and Vuale, A. (1988) 1-Deoxymannojirimycin inhibits Golgi-mediated processing of glycoprotein in Xenopus oocytes. FEBS Lett. 234, 489–492.

    Article  PubMed  CAS  Google Scholar 

  19. Drummond, D. R., Armstrong, J., and Colman, A. (1985) The effect of capping and polyadenylation on the stability, movement and translation of synthetic messenger RNAs in Xenopus oocytes. Nucleic Acids Res. 13, 7375–7394.

    Article  PubMed  CAS  Google Scholar 

  20. Krieg, P. A. and Melton, D. A. (1984) Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res. 12, 7057–7070.

    Article  PubMed  CAS  Google Scholar 

  21. Pelletier, J. and Sonenberg, N. (1985) Insertion mutagenesis to increase secondary structure within the 5′ noncoding region of a eukariotic mRNA reduces translational efficiency. Cell 40, 515–526

    Article  PubMed  CAS  Google Scholar 

  22. Konarska, M. M., Padgett, R. A., and Sharp, P. A. (1984) Recognition of cap structure in splicing in vitro of mRNA precursors. Cell 38, 731–736.

    Article  PubMed  CAS  Google Scholar 

  23. Matthews, G. and Colman, A. (1991) A highly efficient, cell-free translation/translocation system prepared from Xenopus eggs. Nucleic Acids Res. 19, 6405–6412

    Article  PubMed  CAS  Google Scholar 

  24. Buller, A. L. and White, M. M. (1988) Control of Torpedo acetylcholine receptor biosynthesis in Xenopus oocytes. Proc. Natl. Acad. Scl. USA 85, 8717–8721.

    Article  CAS  Google Scholar 

  25. Colman, A. (1990) Antisense strategies in cell and developmental biology J. Cell Sci. 97, 339–409.

    Google Scholar 

  26. Prives C., and Foukal, D. (1991) Use of oligonucleotides for antisense experiments in Xenopus laevis oocytes, in Xenopus laevis: Practical Uses in Cell and Molecular Biology. (Kay, B. K. and Peng, H. eds.), Academic, San Diego, pp. 185–208.

    Chapter  Google Scholar 

  27. Akagi, H., Patton, D. E., and Miledi, M. (1989) Discrimination of heterogeneous mRNAs encoding strychnine-sensitive glycine receptors in Xenopus oocytes by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 86, 8103–8107.

    Article  PubMed  CAS  Google Scholar 

  28. Baker, C., Holland, D., Edge, M., and Colman, A. (1990) Effects of oligo sequence and chemistry on the efficiency of oligodeoxyribonucleotide-mediated mRNA cleavage. Nucleic Acids Res. 18 3537–3543.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Ceriotti, A., Colman, A. (1995). mRNA Translation in Xenopus Oocytes. In: Tymms, M.J. (eds) In Vitro Transcription and Translation Protocols. Methods in Molecular Biology, vol 37. Humana Press. https://doi.org/10.1385/0-89603-288-4:151

Download citation

  • DOI: https://doi.org/10.1385/0-89603-288-4:151

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-288-0

  • Online ISBN: 978-1-59259-524-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics