Skip to main content

Oligoribonucleotide Synthesis

The Silyl-Phosphoramidite Method

  • Protocol
Protocols for Oligonucleotides and Analogs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 20))

Abstract

In 1968, one of us began a quest to develop a general method for the synthesis of RNA sequences. The major problems associated with the chemical assembly of ribonucleotide chains were already well established. RNA sequences are very sensitive to chemical and enzymatic degradation. Consequently, all procedures involved in the assembly of RNA chains must respect the delicacy of the assembled chain. Further, the assembly of RNA sequences is complicated by the presence of a 2′-hydroxyl group in the monomeric ribonucleosides that form the starting materials for the chemical assembly of RNA chains. The 2′-hydroxyl must be blocked (or “protected”) with a protecting group that remains stable throughout the many steps of a chain assembly yet that is labile enough to be removed at the end of chain assembly without leading to cleavage of the assembled chain. Finally, it was clear even in the late 1960s that in order to be convincing the method must be capable of producing an RNA chain of the length of a tRNA in order to overcome the inherent skepticism of chemical synthesis of RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogilvie, K. K. and Iwacha, D. (1974) Synthesis of nucleotides from O2,2′-cyclouridine. Can. J. Chem. 52, 1787–1797.

    Article  CAS  Google Scholar 

  2. Bazant, B. and Chvalowsky, V. (1965) Chemistry of Organosilicon Compounds, vol. I, Academic, New York.

    Google Scholar 

  3. Ogilvie, K. K., Sadana, K. L., Thompson, E. A., Quilliam, M. A., and Westmore, J. B. (1974) The use of silyl groups in protecting the hydroxyl functions of ribonucleosides. Tetrahedron Lett. 15, 2861–2864.

    Article  Google Scholar 

  4. Ogilvie, K. K., Beaucage, S. L., Entwistle, D. W., Thompson, E. A., Quilliam, M. A., and Westmore, J. B. (1976) Alkylsilyl groups in nucleoside and nucleotide chemistry. J. Carbohydrates Nucleosides Nucleotides 3, 197–227.

    CAS  Google Scholar 

  5. Ogilvie, K. K. (1983) Proceedings of the 5th International Round Table on Nucleosides, Nucleotides and Their Biological Applications (Rideout, J. L. Henry, D. W., and Beacham L. M., III, eds.), Academic, London,pp. 209–256.

    Google Scholar 

  6. Usman, N., Ogilvie, K. K., Jiang, M.-Y., and Cedergren, R. J. (1987) The automated chemical synthesis of long oligoribonucleotides using 2′-O-silylribonucleoside-3′-O-phosphoramidites on a controlled pore glass support: the synthesis of a 43-nucleotide sequence similar to the 3′-half molecule of an E. coli formyl-methionine tRNA. J. Am. Chem. Soc. 109, 7845–7854.

    Article  CAS  Google Scholar 

  7. Ogilvie, K. K., Usman, N., Nicoghosian, K., and Cedergren, R. J. (1988) Total chemical synthesis of a 77-nucleotide long RNA sequence having methionine acceptance activity. Proc. Natl. Acad. Set USA 85, 5764–5768.

    Article  CAS  Google Scholar 

  8. Bratty, J., Wu, T., Nicoghosian, K., Ogilvie, K. K., Perrault, J.-P., Keith, G., and Cedergren, R. (1990) Characterization of a chemically synthesized RNA having the sequence of the yeast initiator tRNA(Met) FEBS Lett. 269, 60–64.

    Article  CAS  Google Scholar 

  9. Gait, M. J., Pritchard, C, and Slim, G. (1991) Oligonucleotides and Their Analogs: A Practical Approach (Gait, M. J., ed.), Oxford University Press Oxford, England, pp. 25–48.

    Google Scholar 

  10. Ogilvie, K. K. and Entwistle, D. W. (1981) Isomerization of t-butyldimethylsilyl protecting group in ribonucleosides. Carbohydrate Res. 89, 203–210.

    Article  CAS  Google Scholar 

  11. Wu, T. and Ogilvie, K. K. (1990) A study on the alkylsilyl protecting groups in oligonucleotide synthesis. J. Org. Chem. 55, 4717–4724.

    Article  CAS  Google Scholar 

  12. Slim, G. and Gait, M. J. (1991) Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucl. Acids Res. 19, 1183–1188.

    Article  CAS  Google Scholar 

  13. Pieken, W. A., Olsen, D. B., Benseler, F., Aurup, H., and Eckstein, F. (1991) Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science 252, 314–317.

    Article  Google Scholar 

  14. Stawinski, J., Stromberg, R., Thelin, M., and Westman, E. (1988) Studies on the t-butyldimethylsilyl group as 2′-O-protection in oligoribonucleotide synthesis via the H-phosphonate approach. Nucl. Acids Res. 16, 9285–9298.

    Article  CAS  Google Scholar 

  15. Chaix, C., Molko, D., and Teoule, R. (1989) The use of labile base protecting groups in oligoribonucleotide synthesis. Tetrahedron Lett. 30, 71–74.

    Article  CAS  Google Scholar 

  16. Talbot S. J., Goodman, S., Bates, S. R. E., Fishwick, C. W. G., and Stockley, P. G. (1990) Use of synthetic oligoribonucleotides to probe RNA-protein interactions in the MS2 translational operator complex. Nucl. Acids Res. 18, 3521–3528.

    Article  CAS  Google Scholar 

  17. Chou, S.-H., Flynn, P., and Reid, B. (1989) Solid-phase synthesis and high-resolution NMR studies of two synthetic double-helical RNA dodecamers: r(CGCGAAUUGCG) and r(CGCGUAUACGCG). Biochemistry 28, 2422–2435.

    Article  CAS  Google Scholar 

  18. Milecki, J., Dembek, P., and Antkowiak, W. Z. (1989) On the application of t-butyldimethylsilyl group in chemical RNA synthesis. 31P NMR study of 2′-O-t-BDMS group migration during nucleoside 3′-OH phosphorylation and phosphitylation reactions. Nucleosides and Nucleotides 8, 463–474.

    Article  CAS  Google Scholar 

  19. Wang, Y. Y., Lyttle, M. H., and Borer, P. N. (1990) Enzymatic and NMR analysis of oligoribonucleotides synthesized with 2′-tert-butyldimethylsilyl protected cyanoethylphosphoramidite monomers. Nucl. Acids Res. 18, 3347–3352.

    Article  CAS  Google Scholar 

  20. Scaringe, S. A., Francklyn, C, and Usman, N. (1990) Chemical synthesis of biologically active oligoribonucleotides using 2-cyanoethyl-protected ribonucleoside phosphoramidites. Nucl. Acids Res. 18, 5433–5441.

    Article  CAS  Google Scholar 

  21. Doudna, J. A., Szostak, J. W., Rich, A., and Usman, N. (1990) Chemical synthesis of oligoribonucleotides containing 2-aminopurine: substrates for the investigation of ribozyme function. J. Org. Chem. 55, 5547–5549.

    Article  CAS  Google Scholar 

  22. Pyle, A. M. and Cech, T. R. (1991) Ribozyme recognition of RNA by tertiary interactions with specific ribose 2′-OH groups. Nature 350, 628–630.

    Article  CAS  Google Scholar 

  23. Agrawal, S. and Tang, J.-Y. (1990) Efficient synthesis of oligoribonucleotide and its phosphorothioate analogue using H-phosphonate approach. Tetrahedron Letts. 31, 7541–7544.

    Article  CAS  Google Scholar 

  24. Stawinski J., Stromberg, R., Thelin, M., and Westman, E. (1988) Studies on the t-butyldimethylsilyl group as 2′-O-protection in oligoribonucleotide synthesis via the H-phosphonate approach. Nucl. Acids Res. 16, 9285–9298.

    Article  CAS  Google Scholar 

  25. Slim, G., Pritchard, C., Biala, E., Asseline, U., and Gait, M. J. (1991) Synthesis of site-specifically modified oligoribonucleotides for studies of the recognition of TAR RNA by HIV-1 tat protein and studies of hammerhead ribozymes. International Symposium on Synthetic Oligonucleotides: Problems and Frontiers of Practical Application, June 23–30, Moscow, USSR. Nucl. Acids Res. Symp. Series 24, 55–58.

    Google Scholar 

  26. Charubala, R., Pfleiderer, W., Suhadolnik, R. J., and SoboL R. W. (1991) Chemical synthesis and biological activity of 2′-5′-phosphorothioate tetramer cores. Nucleosides and Nucleotides 10, 383–388.

    Article  CAS  Google Scholar 

  27. Wu, T., Ogilvie, K. K., and Pon, R. T. (1989) Prevention of chain cleavage in the chemical synthesis of 2′-silylated oligoribonucleotides. Nucl. Acids Res. 17, 3501–3517.

    Article  CAS  Google Scholar 

  28. Pon, R. T., Damha, M. J., and Ogilvie, K. K. (1985) Modification of guanine bases by nucleoside phosphoramidite reagents during the solid-phase synthesis of oligonucleotides. Nucl. Acids Res. 13, 6447–6465.

    Article  CAS  Google Scholar 

  29. Pon, R. T., Usman, N., Damha, M. J., and Ogilvie, K. K. (1986) Prevention of guanine modification and chain cleavage during the solid-phase synthesis of oligonucleotides using phosphoramidite reagents. Nucl. Acids Res. 16, 6453–6470.

    Article  Google Scholar 

  30. Hakimelahi, G. H., Proba, Z. A., and Ogilvie, K. K. (1982) New catalysts and procedures for the dimethoxytritylation and selective silylation of ribonucleosides. Can. J. Chem. 60, 1106–1113.

    Article  CAS  Google Scholar 

  31. Ehrenberg, L. and Fedorcsak, F. (1976) Diethylpyrocarbonate in nucleic acid research. Prog. Nucl. Acids Res. 16, 189–262.

    Article  CAS  Google Scholar 

  32. McLaughlin, L. W., Piel, N., and Hellman, T. (1985) Preparation of protected ribo-nucleosides suitable for chemical oligoribonucleotide synthesis. Synthesis 322, 323.

    Google Scholar 

  33. Chu, C. K., Bhadti, V. S., Doboszewskin, B., Gu, Z. P., Kosugi, Y., Pullaiah, K. C, and Roey, P. V. (1989) General synthesis of 2′,3′-dideoxynucleosides and 2′,3′-didehydro-2′,3′-dideoxynucleosides. J. Org. Chem. 54, 2217–2225.

    Article  CAS  Google Scholar 

  34. Ohtsuka, E., Nakagawa, E., Tanaka, T., Markham, A. F., and Ikehara, M. (1978) Studies on transfer ribonucleic acids and related compounds. XXI. Synthesis and properties of guanine rich fragments from E. coli tRNAf Met 5′-end. Chem. Pharm. Bull. 26, 2998–3006.

    CAS  Google Scholar 

  35. Ti, G. S., Gaffney, B. L., and Jones, R. A. (1982) Transient protection: efficient one-flask synthesis of protected deoxynucleosides. J. Am. Chem. Soc. 104, 1316–1319.

    Article  CAS  Google Scholar 

  36. Smith, M., Rammler, D. H., Goldberg, I. H., and Khorana, H. G. (1962) Studies on polynucleotides. XIV. Specific synthesis of the C3′–C5′ inter-ribonucleotide linkage. Syntheses of uridylyl-(3′–5′)-uridine and uridylyl-(3′–5′)-adenosine. J. Am. Chem. Soc. 84, 430–440.

    Article  CAS  Google Scholar 

  37. Ogilvie, K. K., Beaucage, S. L., Schifman, A. L., Theriault, N. Y., and Sadana K. (1978) The synthesis of oligoribonucleotides. II. The use of silyl-protecting groups in nucleoside and nucleotide chemistry VII. Can. J. Chem. 56, 2768–2780.

    Article  CAS  Google Scholar 

  38. Ogilvie, K. K., Schifman, A. L., and Penney, C. (1979) The synthesis of oligoribonucleotides III. The use of sllyl protecting groups in nucleoside and nucleotide chemistry VIII. Can. J. Chem. 57, 2230–2238.

    Article  CAS  Google Scholar 

  39. Atkinson, T. and Smith, T. (1984) Solid-phase synthesis of oligodeoxyribonucleotides by the phosphite-triester method, in Oligonucleotide Synthesis: A Practical Approach (Gait, M. J., ed,). IRL Press, Oxford, pp. 35–81.

    Google Scholar 

  40. Pon, R. T., Usman, N., and Ogilvie, K. K. (1988) Derivatization of controlled pore glass beads of solid-phase oligonucleotide synthesis. BioTechniques 6, 768–775.

    CAS  Google Scholar 

  41. Damha, M. J., Giannaris, P. A., and Zabarylo, S. V. (1990) An improved procedure for derivatization of controlled-pore glass beads for solid-phase oligonucleotide synthesis. Nucl. Acids Res. 18, 3813–3821.

    Article  CAS  Google Scholar 

  42. Applied Biosystems User Bulletin, Issue No. 13, April 1, 1987.

    Google Scholar 

  43. Rickwood, D. and Hames, B. D. (ed.) (1987) Gel Electrophoresis of Nucleic Acids: A Practical Approach. IRL Press, Oxford.

    Google Scholar 

  44. McLaughlin, L. W. and Piel, N. (1991) Chromatographic purification of synthetic oligonucleotides, in Oligonucleotides and Their Analogues: A Practical Approach (Gait, M. J., ed.). IRL Press, Oxford, pp. 117–133.

    Google Scholar 

  45. Pon, R. T. (1984), Ph.D. Thesis, McGill University, Montreal, P. Q., Canada.

    Google Scholar 

  46. Perreault, J.-P., Wu, T., Cousineau, B., Ogilvie, K. K., and Cedergren, R. (1990) Mixed deoxyribo-and ribooligonucleotides with catalytic activity. Nature 344, 565–567.

    Article  CAS  Google Scholar 

  47. Siliciano, P. G., Brow, D. A., Roiha, H., and Guthrie, C. (1987) An essential snRNA from S. cerevisiae has properties predicted for U4, including interaction with a U6-like snRNA. Cell (Cambridge Mass.), 50, 585–592.

    CAS  Google Scholar 

  48. Damha, M. J. and Zabarylo, S. (1989) Automated solid-phase synthesis of branched oligonucleotides. Tetrahedron Lett. 30, 6295–6298.

    Article  CAS  Google Scholar 

  49. Damha, M. J., Hudson, R. H. E., Ganeshan, K., Zabarylo, S. V., and Guo, Y. (1991) Synthesis and properties of branched and hyperbranched oligonucleotides. International Symposium on Synthetic Oligonucleotides: Problems and Frontiers of Practical Application, June 23–30, Moscow, USSR. Nucl. Acids Res. Symp. Series, 24, 203,204.

    Google Scholar 

  50. Yang, J., Perreault, J. P., Labuda, D., Usman, N., and Cedergren, R. (1990) Mixed DNA/RNA polymers are cleaved by the hammerhead ribozyme. Biochemistry 29, 11,156–11,160.

    Article  CAS  Google Scholar 

  51. Damha, M. J., Giannaris, P. A., and Khan, N. (1991) 2′-5′-Linked oligo-ribonucleotides form stable complexes with complementary RNA and DNA. International Symposium on Synthetic Oligonucleotides: Problems and Frontiers of Practical Application, June 23–30, Moscow, USSR. Nucl. Acids Res. Symp. Series, 24, 290.

    Google Scholar 

  52. Kierzek, R., He, L., and Turner, D. H. (1992) Association of 2′-5′ oligoribonucleotides. Nucl. Acids. Res., 20, 1685–1690.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Damha, M.J., Ogilvie, K.K. (1993). Oligoribonucleotide Synthesis. In: Agrawal, S. (eds) Protocols for Oligonucleotides and Analogs. Methods in Molecular Biology, vol 20. Humana Press. https://doi.org/10.1385/0-89603-281-7:81

Download citation

  • DOI: https://doi.org/10.1385/0-89603-281-7:81

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-281-1

  • Online ISBN: 978-1-59259-507-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics