Skip to main content

Oligonucleotide Phosphorofluoridates and Fluoridites

  • Protocol
Protocols for Oligonucleotides and Analogs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 20))

Abstract

Fluoro derivatives of phosphorus are of great importance in the chemistry and biochemistry of both elements. The incorporation of fluorine into biomolecules has frequently resulted in a remarkable change of biological properties. Simple phosphofluoridates and their structural analogs are the classical inhibitors of serine proteases (1a). It can be envisaged that a combination of nucleoside fragments with the phosphorofluoridate moiety could result in new properties with respect to selectivity of interaction with the active site of the serine hydroxy group. On the other hand, nucleotides containing a P—F linkage when incorporated into oligonucleotides could be used in the studies of biological functions of nucleic acids, including possibilities connected with the chirality of the phosphorofluoridate moiety. New phosphorofluoridate analogs of nucleotides could also be useful in studying the metabolic processes (1b) by noninvasive NMR imaging techniques taking advantage of 100% abundance of 19F nucleus and its high inherent NMR sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walsh, C. (1979) Enzymatic Reaction Mechanisms. Freeman and Company, San Francisco.

    Google Scholar 

  2. Filler, R. and Kobayashi, Y. (1983) Biomedical Aspects of Fluorine Chemistry. Elsevier Biomedicinal, Tokyo.

    Google Scholar 

  3. Wittmann, R. (1963) Chem. Ber. 96, 771.

    Article  CAS  Google Scholar 

  4. Clark, V. M. and Hutchinson, D. W. (1968) Progress in Organic Chemistry.

    Google Scholar 

  5. Borden, R. K. and Smith, M. (1966) J. Org. Chem. 31, 3241.

    Article  CAS  Google Scholar 

  6. Sporn, M. B., Berkowitz, D. M., Glinski, R. P., Ash, A. B., and Stevens, C. L. (1969) Science 164, 1408.

    Article  CAS  Google Scholar 

  7. von Tigerstrom, R. and Smith, M. (1970) Science 167, 1266.

    Article  Google Scholar 

  8. Kucerova, Z. and Skoda, J. (1971) Biochem. Biophys. Acta 247, 194.

    CAS  Google Scholar 

  9. Johnson, P. W., von Tigerstrom, R., and Smith, M. (1975) Nucl. Acids Res. 2, 1745.

    Article  CAS  Google Scholar 

  10. von Tigerstrom, R., Jahnke, P., and Smith, M. (1975) Nucl. Acids Res. 2, 1727.

    Article  Google Scholar 

  11. Von Tigerstrom, R., Jahnke, P., Wylie, V., and Smith, M. (1975) Nucl. Acids Res. 2, 1737.

    Article  Google Scholar 

  12. Withers, S. G. and Madsen, N. B. (1980) Biochem. Biophys. Res. Comm. (1980) 97, 513.

    Article  CAS  Google Scholar 

  13. Johnson, P. W. and Smith, M. (1971) Chem. Comm. 379.

    Google Scholar 

  14. Wilson, J. W. and Chung, V. (1989) Arch. Biochem. Biophys. 269, 517.

    Article  CAS  Google Scholar 

  15. Percival, M. D. and Withers, S. G. (1992) J. Org. Chem. 57, 811.

    Article  CAS  Google Scholar 

  16. Pitzele, B. S. (1970) Doctoral Dissertation. Department of Chemistry, Washington Univ., St. Louis, Mo.

    Google Scholar 

  17. Kun, E., Zimber, P. H., Chang, A. Y., Puschendorf, B., and Grunicke, H. (1975) Proc. Natl. Acad. Sci. USA 72, 1436.

    Article  CAS  Google Scholar 

  18. Nichol, A. W., Nomura, A., and Hampton, A. (1967) Biochemistry 6, 1008.

    Article  CAS  Google Scholar 

  19. Sund, Ch. and Chattopadhyaya, J. (1989) Tetrahedron 45, 7523.

    Article  CAS  Google Scholar 

  20. Dabkowski, W. (unpublished results).

    Google Scholar 

  21. Eckstein, F., Bruns, W., and Parmeggiani, A. (1975) Biochemistry 14, 5225.

    Article  CAS  Google Scholar 

  22. Haley, B. and Yount, R. G. (1972) Biochemistry 11, 2863.

    Article  CAS  Google Scholar 

  23. Vogel, H. J. and Bridger, W. A. (1982) Biochemistry 21, 394.

    Article  CAS  Google Scholar 

  24. Monasterio, O. and Timasheff, S. N. (1987) Biochemistry 26, 6091.

    Article  CAS  Google Scholar 

  25. For synthesis of phosphorofluoridates, see: Organischen Phosphorverbin-dungen, Parts I and II in Methoden der Organischen Chemie (Houben Weyl) (Regita, M., ed.) (1982) Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  26. Lopusinski, A. and Michalski, J. (1982) J. Am. Chem. Soc. 104, 290.

    Article  CAS  Google Scholar 

  27. Lopusinski, A. and Michalski, J. (1982) Angew. Chem. 24, 302.

    Google Scholar 

  28. Stec, W. J., Zon, G., and Uznanski, B. (1985) Phosphorofluoridate of the type 5 is presumably formed in the reaction of a dinucleoside phosphorothioate with 2,4-dinitrofluorobenzene. J. Chromatogr. 32b, 263.

    Article  Google Scholar 

  29. Dabkowski, W. and Michalski, J. (1987) J. Chem. Soc. Chem. Commun. 755.

    Google Scholar 

  30. Kume, A., Fujii, M., Sekine, M., and Hata, T. (1984) J. Org. Chem. 49, 2139.

    Article  CAS  Google Scholar 

  31. de Vroom, E., Spierenburg, M. L., Dreef, C.E., van der Marel, G.A., and van Boom, J. H. (1987) Reel. Trav. Chim. Pays-Bas. 106, 65.

    Article  Google Scholar 

  32. Dabkowski, W., Michalski, J., and Wang, Q. (1991) Nucleosides & Nucleotides 10, 601.

    Article  CAS  Google Scholar 

  33. Imai, K., Ito, T., Kondo, S., and Tataku, T. (1985) Nucleosides & Nucle-otides 4, 669.

    Article  CAS  Google Scholar 

  34. Dabkowski, W., Cramer, F., and Michalski, J. (1987) Tetrahedron Lett. 28, 3559.

    Article  CAS  Google Scholar 

  35. Dabkowski, W., Cramer, F., and Michalski, J. (1988) Tetrahedron Lett. 29, 3301.

    Article  CAS  Google Scholar 

  36. Dabkowski, W., Michalski, J., and Wang, Q. (1990) Angew. Chem. Int. Ed. Engl. 29, 522.

    Article  Google Scholar 

  37. Dabkowski, W., Cramer, F., and Michalski, J. (1990) J. Chem. Soc. Perkin Trans. I 141, 7.

    Google Scholar 

  38. Cramer, F., Schaller, H., and Staab, H. A. (1961) Chem. Ber. 94, 1621.

    Article  Google Scholar 

  39. Katagiri, N., Itakura, K., and Narang, S. A. (1975) J. Am. Chem. Soc. 97, 7332.

    Article  CAS  Google Scholar 

  40. Matteucci, M. D. and Caruthers, M. H. (1981) J. Am. Chem. Soc. 103, 3185.

    Article  CAS  Google Scholar 

  41. Dabkowski, W., Skrzypczynski, Z., Michalski, J., Piel, N., McLaughlin, L., and Cramer, F. (1984) Nucl. Acids Res. 12, 9123.

    Article  CAS  Google Scholar 

  42. Dabkowski, W., Michalski, J., and Skrzypczynski, Z. (1986) Phosphorus and Sulfur 26, 321.

    Article  CAS  Google Scholar 

  43. Sonveaux, E. (1986) Bioorg. Chem. 6, 159, and references cited therein.

    Google Scholar 

  44. Dabkowski, W., Cramer, F., and Michalski, J. (1987) Tetrahedron Lett. 28, 3561.

    Article  CAS  Google Scholar 

  45. Kraszewski, A. and Stawinski, J. (1980) Tetrahedron Lett. 21, 2935.

    Article  CAS  Google Scholar 

  46. Eckstein, F. (1966) J. Am. Chem. Soc. 88, 4292.

    Article  CAS  Google Scholar 

  47. Birkofer, F. and Ritter (1961) Angew. Chem. 73, 134.

    Article  Google Scholar 

  48. Shimidzu, T., Yamana, K., Murakami, A., and Nakamichi, K. (1980) Tetrahedron Lett. 21, 2717.

    Article  CAS  Google Scholar 

  49. Froehler, B. C, Ng, P. G., and Matteucci, M. D. (1986) Nucl. Acids Res. 14, 5399.

    Article  CAS  Google Scholar 

  50. Garegg, P.J., Regberg, T., Stawinski, J. (1986) Chem. Scr. 26, 59.

    CAS  Google Scholar 

  51. Koziolkiewicz, M., Uznanski, B., and Stec, W. J. (1986) Chemica Scrpt. 26, 251.

    CAS  Google Scholar 

  52. Eckstein, F. and Gish, G. (1989) Trends in Biochemical Sciences 14, 97 and references cited therein.

    Article  CAS  Google Scholar 

  53. Michalski, J., Dabkowski, W., Lopusinski, A., and Cramer, F. (1991) Nucleosides & Nucleotides 10, 283.

    CAS  Google Scholar 

  54. Stolzer, C. and Simon, A. (1960) Chem. Ber. 93, 1323.

    Article  CAS  Google Scholar 

  55. Michelson, A. M. and Todd, A. R. (1953) J. Chem. Soc. 951.

    Google Scholar 

  56. Chattopadhayaya, J. B. and Reese, C. B. (1978) J. Chem. Soc. Chem. Commun. 639.

    Google Scholar 

  57. Jones, R. A. (1984) Olgonucleotide Synthesis, A Practical Approach (Gait, M. J., ed.) IRL Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Dabkowski, W., Michahki, J., Cramer, F. (1993). Oligonucleotide Phosphorofluoridates and Fluoridites. In: Agrawal, S. (eds) Protocols for Oligonucleotides and Analogs. Methods in Molecular Biology, vol 20. Humana Press. https://doi.org/10.1385/0-89603-281-7:245

Download citation

  • DOI: https://doi.org/10.1385/0-89603-281-7:245

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-281-1

  • Online ISBN: 978-1-59259-507-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics