Oligonucleotide Analogs Containing Dephospho-Internucleoside Linkages

  • Eugen Uhlmann
  • Anusch Peyman
Part of the Methods in Molecular Biology book series (MIMB, volume 20)


Nonionic oligonucleotide analogs have attracted much interest in recent years as potential candidates for oligonucleotide-based therapeutics. Compared to their natural parent molecules, they are expected to have the advantage of:
  1. 1.

    Being stable against degrading nucleases,

  2. 2.

    Showing enhanced cellular uptake, and

  3. 3.

    Having the ability to form more stable complexes with complementary sequences owing to reduced charge repulsion.



Phosphodiester Linkage Stepwise Synthesis Triple Helix Formation Oligonucleotide Analog Sodium Chloroacetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ogilvie, K. K. and Cormier, J. F. (1985) Synthesis of a thymidine dinucleotide analog containing an internucleotide silyl linkage. Tetrahedron Lett. 26, 4159–4162.CrossRefGoogle Scholar
  2. 2.
    Cormier, J. F. and Ogilvie, K. X. (1988) Synthesis of hexanucleotide analogs containing diisopropylsilyl linkages. Nucl. Acids Res. 16, 4583–4594.CrossRefGoogle Scholar
  3. 3.
    Seliger, H. and Feger, G. (1987) Oligonucleotide Analogs with dialkyl silyl internucleoside linkages. Nucleosides & Nucleotides 6, 483, 484.CrossRefGoogle Scholar
  4. 4.
    Schulhof, J. C, Molko, D., and Teoule, R. (1987) The final deprotection step in oligonucleotide synthesis is reduced to a mild and rapid ammonia treatment by using base-labile protecting groups. Nucl. Acids Res. 15, 397–416.CrossRefGoogle Scholar
  5. 5.
    McBride, L. J. and Caruthers, M. H. (1983) N 6(N-methyl-2-pyrrolidine amidine) deoxyadenosine—A new deoxynucleoside protecting group. Tetrahedron Lett. 24, 2953–2956.CrossRefGoogle Scholar
  6. 6.
    Alul, R. H., Singman, C. N., Zhang, G., and Letsinger, R. L. (1991) Oxalyl-CPG: a labile support for synthesis of sensitive oligonucleotide derivatives. Nucl. Acids Res. 19, 1527–1532.CrossRefGoogle Scholar
  7. 7.
    Zon, G. (1988) Oligonucleotide analogs as potential chemotherapeutic agents. Pharmaceutical Res. 5, 539–549.CrossRefGoogle Scholar
  8. 8.
    Matteucci, M. (1990) Deoxyoligonucleotide analogs based on formacetal linkages. Tetrahedron Lett. 31, 2385–2388.CrossRefGoogle Scholar
  9. 9.
    Veeneman, G. H., van der Marel, G. A., van den Elst, H., and van Boom, J. H. (1990) Synthesis of oligonucleotides containing thymidines-linked via an internucleosidic-3′5′-methylene bond. Rec. Trav. Chim. 109, 449–451.CrossRefGoogle Scholar
  10. 10.
    Veeneman, G. H., van der Marel, G. A., van den Elst, H., and van Boom, J. H. (1991) An efficient approach to the synthesis of thymidine derivatives containing phosphateisosteric methylene acetal linkages. Tetrahedron 47, 1547–1562.CrossRefGoogle Scholar
  11. 11.
    Matteucci, M., Lin, K.-Y., Butcher, S., and Moulds, C. (1991) Deoxyoligonucleotides bearing neutral analogs of phosphodiester linkages recognize duplex DNA via Triple-Helix Formation. J. Am. Chem. Soc. 113, 7767, 7768.CrossRefGoogle Scholar
  12. 12.
    Matteucci, M. (1991) Oligonucleotide analogs with novel linkages. Int. Pat. Application WO 91/06629.Google Scholar
  13. 13.
    Matteucci, M. (1991) Hybridization properties of a deoxyoligonucleotide containing four formacetal linkages. Nucleosides & Nucleotides 10, 231–234.CrossRefGoogle Scholar
  14. 14.
    Tittensor, J. R. (1971) The preparation of nucleoside carbonates. J. Chem. Soc (C), 2656–2662.Google Scholar
  15. 15.
    Jones, D. S. and Tittensor, J. R. (1969) The preparation of dinucleoside carbonates. Chem. Commun., 1240.Google Scholar
  16. 16.
    Mertes, M. P. and Coats, E. A. (1969) Synthesis of carbonate analogs of dinucleosides. 3′-thymidinyl-5′-thymidinyl carbonate, 3′-thymidinyl-5′-(5-fluoro-2′-deoxyuridinyl) carbonate, and 3′-(5-flouro-2′-deoxyuridinyl)-5′-thymidinyl carbonate. J. Med. Chem. 12, 154–157.CrossRefGoogle Scholar
  17. 17.
    Halford, M. H. and Jones, A. S. (1968) Synthetic analogs of polynucleotides. Nature (Lond.) 217, 638–640.CrossRefGoogle Scholar
  18. 18.
    Halford, M. H. and Jones, A. S. (1968) Synthetic analogs of polynucleotides. Part IV. Carboxymethyl derivatives of uridine and thymidine. J. Chem. Soc. (C), 2667–2670.Google Scholar
  19. 19.
    Jones, A. S., MacCoss, M., and Walker, R. T. (1973) Synthetic analogs of polynucleotides X. The synthesis of poly-(3′-O-carboxylmethyl-2′-deoxyadenosine), and its interaction with polynucleotides. Biochim. Biophys. Ada 365, 365–377.Google Scholar
  20. 20.
    Bleaney, R. C, Jones, A. S., and Walker R. T. (1975) Synthetic analogs of polynucleotides XIV. The synthesis of poly-(3′-O-carboxylmethyl-2′-deoxycytidine), and its interaction with polyinosinic acid. Nucl. Acids Res. 2, 699–706.CrossRefGoogle Scholar
  21. 21.
    Edge, M. D. and Jones, A. S. (1971) Synthetic analogs of polynucleotides. Part V. Analogs of trinucleoside diphosphates containing carboxymethylthymidine. J. Chem. Soc. (C), 1933–1939.Google Scholar
  22. 22.
    Edge, M. D., Hodgson, A., Jones, A. S., MacCoss, M., and Walker, R. T. (1973) Synthetic analogs of polynucleotides. Part IX. Synthesis of 3′-O-carboxymethyl-2′-deoxyribonucleosides and their use in the synthesis of an analog of 2′-deoxyadenylyl-(3′-5′)thymidine 3′-phosphate. J. Chem. Soc. Perkin I, 290–294.CrossRefGoogle Scholar
  23. 23.
    Edge, M. D., Hodgson A., Jones, A. S., and Walker, R. T. (1972) Synthetic analogs of polynucleotides. Part VIII. analogs of oligonucleotides containing carboxymethylthymidine. J. Chem. Soc. Perkin I, 1991–1996.CrossRefGoogle Scholar
  24. 24.
    Gait, M. J., Jones, A. S., and Walker, R. T. (1974) Synthetic analogs of polynucleotides. Part XII. Synthesis of thymidine derivatives containing an oxyacetamido-or oxyformamido-linkage of a phosphodiester group. J. Chem. Soc. Perkin I, 1684–1686.CrossRefGoogle Scholar
  25. 25.
    Gait, M. J., Jones, A. S., Jones, M. D., Shephard, M. J., and Walker, R. T. (1979) Synthetic analogs of polynucleotides. Part 15. The synthesis and properties of poly(5′-amino-3′-O-carboxymethyl-2′,5′-dideoxyerythropento-nucleosides) containing 3′(O)-5′(C) acetamidate linkages. J. Chem. Soc. Perkin I, 1389–1394 36.CrossRefGoogle Scholar
  26. 26.
    Nyilas, A., Glemarec, C, and Chattopadhyaya, J. (1990) Synthesis of [3′(O)-5′(C)]-oxyacetamido linked nucleosides. Tetrahedron 46, 2149–2164.CrossRefGoogle Scholar
  27. 27.
    König, W. and Geiger, R. (1970) Eine neue Methode zur Synthese von Peptiden: Aktivierung der Carboxylgruppe mit Dicyclohexylcarbodiimid unter Zusatz von 1-Hydroxybenzotriazolen. Chem. Ber. 103, 788–798.CrossRefGoogle Scholar
  28. 28.
    Mungall, W. S. and Kaiser, J. K. (1977) Carbamate analogs of oligonucleotides. J. Org. Chem. 42, 703–706.CrossRefGoogle Scholar
  29. 29.
    Stirchak, E. P., Summerton, J. E., and Weller, D. D. (1987) Uncharged stereo-regular nucleic acid analogs. 1. Synthesis of a cytosine-containing oligomer with carbamate internucleoside linkages. J. Org. Chem. 52, 4202–4206.CrossRefGoogle Scholar
  30. 30.
    Griffin, D., Laramee, J., Deinzer, D., Stirchak, E., and Weller, D. (1988) Negative ion fast atom bombardment mass spectrometry of oligonucleotide carbamate analogs. Biomed. Environm. Mass. Spectrom. 17, 105–111.CrossRefGoogle Scholar
  31. 31.
    Coull, J. M, Carlson, D. V., and Weith, H. L. (1987) Synthesis and characterization of a carbamate-linked oligonucleoside. Tetrahedron Lett. 28, 745–748.CrossRefGoogle Scholar
  32. 32.
    Stirchak, E. P., Summerton, J. E., and Weller, D. D. (1989) Uncharged stereo-regular nucleic acid analogs: 2. Morpholino nucleoside oligomers with carbamate internucleoside linkages. Nucl. Acids Res. 17, 6129–6141.CrossRefGoogle Scholar
  33. 33.
    Ohgi, T., Ishiyama, K., Tomi, H., and Yano, J. (1991) Synthesis and its properties of oligonucleotide analog containing thiocarbamate interlinkages. Nucl. Acids Res. Symp. Ser. 25,17,18.Google Scholar
  34. 34.
    Overberger, C. G. and Michelatti F. W. (1958) N-Vinyl derivatives of substituted pyrimidines and purines. J. Am. Chem. Soc. 80, 988–991.CrossRefGoogle Scholar
  35. 35.
    Pitha, J., Pitha, P. M., and Ts′O, P. O. P. (1970) Poly(1-vinyluracil): The preparation and interactions with adenosine derivatives. Biochim. Biophys. Ada 204, 39–48.Google Scholar
  36. 36.
    Inaki, Y. and Takemoto, K. (1987) Functionality and applicability of synthetic nucleic acid analogs. Current Top. Polym. Sci. 1, 80–100.Google Scholar
  37. 37.
    Takemoto, K. and Inaki, Y. (1981) Synthetic nucleic acid analogs: preparation and interaction. Adv. Pol. Sci. 41, 1–51.Google Scholar
  38. 38.
    Pitha, J. (1983) Physiological activities of synthetic analogs of polynucleotides. Adv. Pol. Sci. 50, 1–16.CrossRefGoogle Scholar
  39. 39.
    Nielsen, P. E., Egholm, M., Berg, R., and Buchardt, O. (1991) Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 254, 1497–1500.CrossRefGoogle Scholar
  40. 40.
    De Koning, H. and Pandit, U. K. (1971) Unconventional nucleotide analogs. VI. Synthesis of purinyl and pyrimidinyl-peptides. Rec. Trav. Chim. 91, 1069–1080.Google Scholar
  41. 41.
    Buttrey, J. D., Jones, A. S., and Walker, R.T. (1975) Synthetic analogs of poly-nucleotides-XIII. The resolution of DL-β-(thymin-l-yl)alanine and polymerisation of the B-(thymin-1-yl)alanines. Tetrahedron 31, 73–75.CrossRefGoogle Scholar
  42. 42.
    Weller, D. D., Daly, D. T., Olson, W. K., and Summerton, J. E. (1991) Molecular modeling of acyclic polyamide oligonucleotide analogs. J. Org. Chem. 56, 6000–6006.CrossRefGoogle Scholar
  43. 43.
    Huang, S.-B., Nelson, J. S., and Weller, D. D. (1991) Acyclic nucleic acid analogs: synthesis and oligomerization of γ,4-diamino-2-oxo-l(2H)-pyrimidinepentanoic acid and δ,4-diamino-2-oxo-l(2H)-pyrimidinehexanoic acid. J. Org. Chem. 56, 6007–6018.CrossRefGoogle Scholar
  44. 44.
    Takemoto, K. and Inaki, Y. (1988) Nucleic acids analogs: their specific interaction and applicability. Polym. Mat. Sci. Eng. 78, 250–253.Google Scholar
  45. 45.
    Uhlmann, E. and Peyman, A. (1990) Antisense oligonucleotides: a new therapeutic principle. Chem. Rev. 90, 543–584.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1993

Authors and Affiliations

  • Eugen Uhlmann
    • 1
  • Anusch Peyman
    • 1
  1. 1.Hoechst AGFrankfurtGermany

Personalised recommendations