Skip to main content

Chaperonins in Phage Display of Antibody Fragments

  • Protocol
Antibody Engineering Protocols

Part of the book series: Methods In Molecular Medicine™ ((MIMB,volume 51))

  • 895 Accesses

Abstract

The display of antibody fragments on the surface of filamentous bacteriophages (17) constitutes a powerful system for the selection of molecules with desired specificities. In phage display, the antibody fragment is coupled to the minor coat protein (protein3) of bacteriophage M13 phage and is, in this way, both anchored in the phage capsid and exposed on the phage surface, linking specificity and genetic information. This permits direct isolation and sequence determination of the gene encoding the antibody fragment. The gene can subsequently be exposed to further engineering and selection in order to improve affinity and specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parmley, S. F. and Smith, G. P. (1988) Antibody-selectable filamentous fd phage vectors affinity purification of target genes. Gene 73, 305–318.

    Article  PubMed  CAS  Google Scholar 

  2. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554.

    Article  PubMed  CAS  Google Scholar 

  3. Barbas, C. F., III, Kang, A. S., Lerner, R. A., and Benkovic, S. J. (1991) Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc. Natl. Acad. Sci. USA 88, 7978–7982.

    Article  PubMed  CAS  Google Scholar 

  4. Chang, C. N., Landolfi, N. F., and Queen, C. (1991) Expression of antibody Fab domains on bacteriophage surfaces. Potential use for antibody selection. J. Immunol. 147, 3610–3614.

    PubMed  CAS  Google Scholar 

  5. Garrard, L. J., Yang, M., O’Conell, M. P., Kelley, R. F., and Henner, D. J. (1991) Fab assembly and enrichment in a monovalent phage display system. Bio/Technology 9, 1373–1377.

    Article  PubMed  CAS  Google Scholar 

  6. Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P., and Winter, G. (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res. 19, 4133–4137.

    Article  PubMed  CAS  Google Scholar 

  7. Söderlind, E., Simonsson Lagerkvist, A.-C., Dueñas, M., Malmborg, A.-C., Ayala, M., Danielsson, L., and Borrebaeck, C. A. K. (1993) Chaperonin assisted phage display of antibody fragments on filamentous bacteriophage. Bio/Technology 11, 503–507.

    Article  PubMed  Google Scholar 

  8. Larrick, J. W., Danielsson, L., Brenner, C. A., Abrahamsson, M., Fry, K. E., and Borrebaeck, C. A. K. (1989) Rapid cloning of rearranged immunoglobulin genes from human hybridoma cells using mixed primers and polymerase chain reaction. Biochem. Biophys. Res. Commun. 160, 1250–1256.

    Article  PubMed  CAS  Google Scholar 

  9. Campbell, M. J., Zelenetz, A. D., Levy, S., and Levy, R. (1992) Use of family specific leader region primers for PCR amplification of the human heavy chain variable region gene repertoire. Mol. Immunol. 29, 193–203.

    Article  PubMed  Google Scholar 

  10. Barbas, C. F., III, Bain, J. D., Hoekstra, D. M., and Lerner, R. A. (1991) Semisynthetic combinatorial libraries: a chemical solution to the diversity problem. Proc. Natl. Acad. Sci. USA 89, 4457–4461.

    Article  Google Scholar 

  11. Griffiths, A. D., Williams, S. C., Hartley, O., Tomlinson, I. M., Waterhouse, P., Crosby, W. L., Kontermann, R. E., Jones, P. T., Low, N. M., Allison, T. J., Prospero, T. D., Hoogenboom, H. R., Nissim, A., Cox, J. P. L., Harrison, J. L., Zaccolo, M., Gherardi, E., and Winter, G. (1994) Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260.

    PubMed  CAS  Google Scholar 

  12. Söderlind, E., Vergeles, M., and Borrebaeck, C. A. K. (1995) Domain libraries: synthetic diversity for de novo design of antibody V-regions. Gene, in press.

    Google Scholar 

  13. Dueñas, M. and Borrebaeck, C. A. K. (1994) Clonal selection and amplification of phage displayed antibodies by linking antigenic recognition and phage replication. Bio/Technology 12, 999–1002.

    Article  PubMed  Google Scholar 

  14. Ellis, R. J. (1994) Molecular chaperones. Opening and closing the Anfinsen cage. Curr. Biol. 4, 633–635.

    Article  PubMed  CAS  Google Scholar 

  15. Waterhouse, P., Griffiths, A. D., Johnson, K. S., and Winter, G. (1993) Combinatorial infection and in vivo recombination. a strategy for making large phage antibody repertoires. Nucleic Acids Res. 21, 2265,2266.

    Article  Google Scholar 

  16. Zeilstra-Ryalls, J., Fayet, O., and Georgopoulos, C. (1991) The universally conserved GroE (Hsp60) chaperonins. Annu. Rev. Microbiol. 45, 301–325.

    Article  PubMed  CAS  Google Scholar 

  17. Goloubinoff, P., Gatenby, A. A., and Lorimer, G. H. (1989) GroE heat shock proteins promote assembly of foreign procaryotic ribulose bisphosphate carboxylate in Escherichia coli. Nature 337, 44–47.

    Article  PubMed  CAS  Google Scholar 

  18. Goloubinoff, P., Christeller, J. T., Gatenby, A. A., and Lorimer, G. H. (1989) Reconstitution of active ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and MG-ATP. Nature 342, 884–889.

    Article  PubMed  CAS  Google Scholar 

  19. Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai, M.-S., Novotny, J., Margolies, M. N., Ridge, R. J., Bruccoleri, R., Haber, E., Crea, R., and Opperman, H. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue. Proc. Natl. Acad. Sci. USA 85, 5879–5883.

    Article  PubMed  CAS  Google Scholar 

  20. Skerra, A. and Plückthun, A. (1988) Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240, 1038–1041.

    Article  PubMed  CAS  Google Scholar 

  21. Plückthun, A. and Skerra, A. (1989) Expression of functional antibody Fv and Fab fragments in Escherichia coli. Methods Enzymol. 178, 497–515.

    Article  PubMed  Google Scholar 

  22. Ward, E. S., Güssow, D., Griffiths, A. D., Jones, P. T., and Winter, G. (1989) Binding activities of a repertoire of immunoglobulins secreted from Escherichia coli. Nature 341, 544–546.

    Article  PubMed  CAS  Google Scholar 

  23. Borrebaeck, C. A. K., Malmborg, A.-C., Furebring, C., Michaelsson, A., Ward, S., Danielsson, L., and Ohlin, M. (1992) Kinetic analysis of recombinant antibody-antigen interactions: relation between structural domains and antigen binding. Bio/Technology 6, 697,698.

    Google Scholar 

  24. Dueñas, M., Ayala, M., Vázguez, J., Ohlin, M., Soderlind, E., Borrebaeck, C. A. K., and Gavilondo, J. V. (1995) A point mutation in a murine immunoglobulin V-region strongly influences the antibody yield in Escherichia coli. Gene, in press.

    Google Scholar 

  25. Dueñas, M., Vázquez, J., Ayala, M., Soderlind, E., Ohlin, M., Perez, L., Borrebaeck, C. A. K., and Gaviolondo, J. V. (1994) Intra-and extracellular expression of a scFv antibody fragment in E. coli: Effect of bacterial strains and pathway engineering using GroES/L chaperoniris. BioTechniques 16, 476–483.

    PubMed  Google Scholar 

  26. Novoa, L. I., Madrazo, J., Fernandez, J. R., Benitez, J., Narciandi, E., Rodriquez, J. C., Estrada, M. P., Garcia, J., and Herrera, L. (1991) Method for the expression of heterologous protein produced in fused fon-n in E. coli, use thereof, expression vectors and recombinant strains. European Patent Application 416673 A1.

    Google Scholar 

  27. Dueñas, M. and Borrebaeck, C. A. K. (1995) Novel helper phage design intergenic region affects the assembly of bacteriophages and the size of antibody libraries. FEMS Microbiol. Lett. 125, 317–322.

    Article  PubMed  Google Scholar 

  28. Crissman, J. W. and Smith, G. P. (1984) Gene-III protein of filamentous phages: evidence for carboxy-terminal domain with a role in morphogenesis. Virology 132, 445–455.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Söderlind, E., Dueñas, M., Borrebaeck, C.A.K. (1995). Chaperonins in Phage Display of Antibody Fragments. In: Paul, S. (eds) Antibody Engineering Protocols. Methods In Molecular Medicine™, vol 51. Humana Press. https://doi.org/10.1385/0-89603-275-2:343

Download citation

  • DOI: https://doi.org/10.1385/0-89603-275-2:343

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-275-0

  • Online ISBN: 978-1-59259-538-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics