Skip to main content

Molecular Modeling of Antibody-Combining Sites

  • Protocol

Part of the book series: Methods In Molecular Medicine™ ((MIMB,volume 51))

Abstract

Antibodies possess a vast repertoire of specificity and affinity. To understand the molecular basis of antibody function, we require high-resolution X-ray crystallographic structures and good solution structures of free and antigen-bound antibodies. The number of reported antibody structures grows each year. Yet the number of structures deposited with the Brookhaven Protein Database (PDB) (1) remains relatively small, with 43 deposited entries at the time of writing, when compared to the available sequence data. It is therefore important to develop an effective method of predicting the structure of antibody-combining sites. The validity of predicted structures can then be confirmed by mutagenesis in the combining site. The models can also provide valuable structural information to “humanize” antibodies for therapy effectively, to develop immunosensors, and even for the complete de novo design of new antibodies with different functions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., and Tasumi, M. (1977) The protein data bank. A computer based archival file for macromolecular structures. J. Mol. Biol. 112, 535–542.

    Article  PubMed  CAS  Google Scholar 

  2. Guddat, L. W., Shari, L., Anchin, J. M., Linthicum, D. S., and Edmundson, A. B. (1994) Local and transmitted conformational changes on complexation of an anti-sweetener Fab. J. Mol. Biol. 236, 247–274.

    Article  PubMed  CAS  Google Scholar 

  3. Martin, C. R., Cheetham, J. C., and Rees, A. R. (1991) Molecular modeling of antibody combining sites. Methods Enzymol. 203, 121–153.

    Article  PubMed  CAS  Google Scholar 

  4. Pedersen, J., Searle, S., Henry, A., and Rees, A. R. (1992) Antibody modeling: Beyond homology. ImmunoMethods 1, 126–136.

    Article  CAS  Google Scholar 

  5. Rees, A. R., Pedersen, J. T., Searle, S. J., Henry, A. H., and Webster, D. M. (1993) Towards rational antibody engineering, in Protein Engineering II (Goodenough, P., ed.), CPL, Newbury, pp. 95–111.

    Google Scholar 

  6. Rees, A. R., Staunton, D., Webster, D. M., Searle, S. J., Henry, A. H., and Pedersen, J. T. (1994) Antibody design: beyond the limits. Trends Biotechnol. 12, 199–206.

    Article  PubMed  CAS  Google Scholar 

  7. Webster, D. M., Pedersen, J., Staunton, D., Jones, A., and Rees, A. R. (1994) Antibody combining sites: extending the natural limits. Appl. Biochem. Biotechnol. 47, 119–134.

    Article  PubMed  CAS  Google Scholar 

  8. Searle, S. J., Pedersen, J. T., Henry, A. H., Webster, D. M., and Rees, A. R. (1995) Antibody structure and function, in Antibody Engineering Manual (Borrebaeck, K., ed.), Oxford University Press, Oxford, UK, pp. 3–51.

    Google Scholar 

  9. Rees, A. R., Pedersen, J. T., Searle, S. J., Henry, A. H., and Webster, D. M. (1994) Antibody structure from X-ray crystallography and molecular modeling, in Immunochemistry (van Oss, C. J. and van Regenmortel, H. V., eds.), Marcel Dekker, New York, pp. 616–650.

    Google Scholar 

  10. AbM. A computer program for modeling variable regions of antibodies. Oxford Molecular Ltd., Oxford, UK.

    Google Scholar 

  11. Poljak, R. J., Amzel, L. M., Avery, H. P., Chen B. L., Phizackerley, R. P., and Daul, F. (1973) Three-dimensional structure of the Fab fragment of a human immunoglobulin at 2.8 Å. Proc. Natl. Acad. Sci. USA 70, 3305–3310.

    Article  PubMed  CAS  Google Scholar 

  12. Deisenhofer, J., Colman, P. M., and Huber, R. (1976) Crystallographic structural studies of a human Fc fragment. I. An electron density map at 4 Å resolution and a partial model. Hoppe-Seyler’s Z Physiol. Chem. 357, 435–445.

    Article  PubMed  CAS  Google Scholar 

  13. Lesk, A. M. and Chothia, C. (1982) Evolution of proteins formed by β-sheets. 2. The core of the immunoglobulin domains. J. Mol. Biol. 160, 325–342.

    Article  PubMed  CAS  Google Scholar 

  14. Chothia, C. and Janin, J. (1981) Relative orientation of close-packed β-pleated sheets in proteins. Proc. Natl. Acad. Sci. USA 78, 4146–4050.

    Article  PubMed  CAS  Google Scholar 

  15. Novotny, J., Bruccoleri, R., Newell, J., Murphy, D., Haber, E., and Karplus, M. (1983) Molecular anatomy of the antibody-binding site. J. Biol. Chem. 258, 14,433–14,437.

    PubMed  CAS  Google Scholar 

  16. Webster, D. M., Henry, A. H., and Rees, A. R. (1994) Antibody-antigen interactions. Curr. Opin. Struct. Biol. 4, 123–129.

    Article  CAS  Google Scholar 

  17. Bolger, M. B. and Sherman, M. A. (1991) Computer modeling of combining site structure of anti-hapten monoclonal antibodies. Methods Enzymol. 203, 21–45.

    Article  PubMed  CAS  Google Scholar 

  18. Padlan, E. A. and Kabat, E. A. (1991) Modeling antibody combining sites. Methods Enzymol. 203, 3–21.

    Article  PubMed  CAS  Google Scholar 

  19. Anchin, J. M. and Linthicum, D. S. (1992) Molecular and computational techniques for modelling antibody combining sites. J. Clin. Immunoassay 15, 42–50.

    Google Scholar 

  20. Mandal, C. and Linthicum, D. S. (1992) Computer-aided modeling of complete antibody Fab structures using alpha carbon atomic coordinates. J. Clin. Immunoassay 15, 42–50.

    Google Scholar 

  21. Kabat, E. A., Wu, T. T., Reid-Miller, M., Perry, H. M., and Gottesman, K. S. (1992) Sequences of Proteins of Immunological Interest, 5th ed. US Department of Health and Human Services, National Institutes of Health, NIH publication no. 91-3242.

    Google Scholar 

  22. Padlan, E. A., Davies, D. R., Pecht, I., Givol, D., and Wright, C (1976) Model building studies of antigen binding sites: the hapten binding site of MOPc315. Cold. Spring Harbor Symp. Quant. Biol. 41, 627–637.

    Google Scholar 

  23. Mainhart, C. R., Potter, M., and Feldmann, R. J. (1984) A refined model for the variable domains (Fv) of the J539 β(1,6)-D-galactan-binding immunoglobulin. Mol. Immunol. 21, 469–478.

    Article  PubMed  CAS  Google Scholar 

  24. Wilmot, C. M. and Thornton, J. M. (1988) Analysis and prediction of the different types of β-turns in proteins. J. Mol. Biol. 203, 221–232.

    Article  PubMed  CAS  Google Scholar 

  25. Rose, G. D., Gierasch, L. M., and Smith, J. A. (1985) Turns in peptides and proteins. Adv. Prot. Chem. 37, 1–109.

    Article  CAS  Google Scholar 

  26. Darsley, M. J., Phillips, B. C., Rees, A. R., Sutton, B. J., and de la Paz, P. (1985) An approach to the study of anti-protein antibody combining sites, in Investigation and Exploitation of Antibody Combining Sites Plenum, New York, pp. 63–68.

    Google Scholar 

  27. de la Paz, P., Sutton, B. J., Darsley, M. J., and Rees, A. R. (1986) Modeling of the combining sites of three anti-lysozyme monoclonal-antibodies and of the complex between one of the antibodies and its epitope. EMBO J. 5, 415–425.

    PubMed  Google Scholar 

  28. Chothia, C. and Lesk, A. M. (1987) Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196, 901–917.

    Article  PubMed  CAS  Google Scholar 

  29. Chothia, C., Lesk, A. M., Tramontano, A., Levitt, M., Smith-Gill, S. J., Air, G., Sheriff, S., Padlan, E. A., Davies, D., Tulip, W. R., Colman, P. M., Spinelli, S., Alzari, P. M., and Poljak, R. J. (1989) Conformations of immunoglobulin hypervariable regions. Nature 342, 877–883.

    Article  PubMed  CAS  Google Scholar 

  30. Snow, M. E. and Amzel, L. M. (1986) Calculation of the three dimensional changes in protein structure due to amino acid substitutions: the variable region of immunoglobulins. Proteins: Struct. Funct. Genet. 1, 267–279.

    Article  CAS  Google Scholar 

  31. Bajorath, J., Stenkemp, R., and Aruffo, A. (1993) Knowledge-based model building of proteins: concepts and examples. Protein Sci. 2, 1798–1810.

    Article  PubMed  CAS  Google Scholar 

  32. Shenkin, P. S., Yarmush, D. L., Fine, R. M., Wang, H., and Levinthal, C. (1987) Predicting the antibody hypervariable loop conformation. I. Ensembles of random conformations for ringlike structures. Biopolymers 26, 2053–2085.

    Article  PubMed  CAS  Google Scholar 

  33. Bruccoleri, R. E., Haber, E., and Novotny, J. (1988) Structure of antibody hypervariable loops reproduced by a conformational search algorithm. Nature 335, 564–568.

    Article  PubMed  CAS  Google Scholar 

  34. Bruccoleri, R. E. (1993) Application of systematic conformational search to protein modeling. Mol. Simulation 10, 151–174.

    Article  CAS  Google Scholar 

  35. Bassolino-Klimas, D., Bruccoleri, R. E., and Subramaniam, S. (1992) Modeling the antigen combining site of an anti-dinitrophenyl antibody, AN02. Protein Sci. 10, 1465–1476.

    Article  Google Scholar 

  36. Higo, J., Collura, V., and Garnier, J. (1992) Development of an extended simulated annealing method: application to the modeling of complementary determining regions of immunoglobulins. Biopolymers 32, 33–43.

    Article  PubMed  CAS  Google Scholar 

  37. Collura, V., Higo, J., and Garnier, J. (1993) Modeling of protein loops by simulated annealing. Protein Sci. 2, 1502–1510.

    Article  PubMed  CAS  Google Scholar 

  38. Zheng, Q., Rosenfeld, R., Vajda, S., and deLisi, C. (1993) Determining protein loop conformation using scaling-relaxation techniques. Protein Sci. 2, 1242–1248.

    Article  PubMed  CAS  Google Scholar 

  39. Zheng, Q., Rosenfeld, R., deLisi, C., and Kyle, D. J. (1994) Multiple copy sampling in protein loop modeling: computational efficiency and sensitivity to dihedral angle perturbations. Protein Sci. 3, 493–506.

    Article  PubMed  CAS  Google Scholar 

  40. Miranker, A. and Karplus, M. (1991) Functionality maps of binding sites: a multicopy simultaneous search method. Proteins: Struct. Funct. Genet. 11, 29–34.

    Article  CAS  Google Scholar 

  41. Fine, R. M., Wang, H., Shenkin, P. S., Yarmush, D. L., and Levinthal, C. (1986) Predicting antibody hypervariable loop conformations II: minimization and molecular dynamics studies of McPC603 from many randomly generated loop conformations. Proteins: Struct. Funct. Genet. 1, 342–362.

    Article  CAS  Google Scholar 

  42. van Gelder, C. W. G., Leusen, F. J. J., Leunissen, J. A. M., and Noordik, J. H. (1994) A molecular dynamics approach for the generation of complete protein structures from limited coordinate data. Proteins: Struct. Funct. Genet. 18, 174–185.

    Article  Google Scholar 

  43. Chothia, C. and Lesk, A. M. (1987) Canonical structures for the hypervariable regions of immunoglobulins. J. Mol. Biol. 196, 901–917.

    Article  PubMed  CAS  Google Scholar 

  44. Chothia, C., Lesk, A. M., Tramontano, A., Levitt, M., Smith-Gill, S. J., Air, G., Sheriff, S., Padlan, E. A., Davies, D., Tulip, W. R., Colman, P. M., Spinelli, S., Alzari, P. M., and Poljak, R. J. (1989) Conformations of immunoglobulin hypervariable regions. Nature 342, 877–883.

    Article  PubMed  CAS  Google Scholar 

  45. Tramontano, A., Chothia, C., and Lesk, A. M. (1989) Structural determinants of the conformations of medium-sized loops in proteins. Proteins: Struct. Funct. Genet. 6, 382–394.

    Article  CAS  Google Scholar 

  46. Tramontano, A., Chothia, C., and Lesk, A. M. (1990) Framework residue 71 is a major determinant of the position and conformation of the second hypervariable region in the VH, domains of immunoglobulins. J. Mol. Biol. 215, 175–182.

    Article  PubMed  CAS  Google Scholar 

  47. Chothia, C., Lesk, A. M., Gherardi, E., Tomlinson, I. M., Walter, G., Marks, J. D., Llewelyn, M. B., and Winter, G. (1992) Structural repertoire of the human VH segments. J. Mol. Biol. 227, 799–817.

    Article  PubMed  CAS  Google Scholar 

  48. Tramontano, A. and Lesk, A. M. (1992) Common features of the conformations of antigen-binding loops in immunoglobulins and application to modeling loop conformations. Proteins Struct. Funct. Genet. 13, 231–245.

    Article  PubMed  CAS  Google Scholar 

  49. Wu, S. and Cygler, M. (1993) Conformation of complementarity determining region L1 loop in murine IgG λ light chain extends the repertoire of canonical forms. J. Mol. Biol. 229, 597–601.

    Article  PubMed  CAS  Google Scholar 

  50. Steipe, B., Pluckthun, A., and Huber, R. (1992) Refined crystal structure of a recombinant immunoglobulin domain and a complementary-determining region 1-grafted mutant. J. Mol. Biol. 225, 739–753.

    Article  PubMed  CAS  Google Scholar 

  51. Padlan, E. A., Sliverton, E. W., Sheriff, S., Cohen, G. H., Smith-Gill, S. J., and Davies, D. R. (1989) Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc. Natl. Acad. Sci. USA 86, 5938–5942.

    Article  PubMed  CAS  Google Scholar 

  52. Epp, O., Lattman, E. E., Schiffer, M., Huber, R., and Palm, W. (1975) The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein/REI refined at 2.0 Å resolution. Biochemistry 14, 4943–4952.

    Article  PubMed  CAS  Google Scholar 

  53. Jones, T. A. and Thirup, S. (1986) Using known substructures in protein model building and crystallography. EMBO J. 5, 819–822.

    PubMed  CAS  Google Scholar 

  54. Sutcliffe, M. J., Hancef, I., Camey, D., and Blundell, T. L. (1987) Knowledge-based modelling of homologous proteins, Part 1: three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1, 377–384.

    Article  PubMed  CAS  Google Scholar 

  55. Stanford, J. M. and Wu, T. T. (1981) A predictive method for determining possible three-dimensional foldings of immunoglobulin backbones around antibody combining sites. J. Theor. Biol. 88, 421–439.

    Article  PubMed  CAS  Google Scholar 

  56. Moult, J. and James, M. N. G. (1986) An algorithm for determining the conformation of polypeptide segments in proteins by systematic search. Proteins: Struct. Funct. Genet. 1, 146–163.

    Article  CAS  Google Scholar 

  57. Dammkoehler, R. A., Karasek, S. F., Berkley Shands, E. F., and Marshall, G. R. (1989) Constrained search of conformational hyperspace. J. Comput. Aided Mol. Des. 3, 3–21.

    Article  PubMed  CAS  Google Scholar 

  58. Havel, T. F., Kuntz, I. D., and Crippen, G. M. (1983) The combinatorial distance geometry method for the calculation of molecular conformations I. A new approach to an old problem. J. Theor. Biol. 104, 359–381.

    Article  PubMed  CAS  Google Scholar 

  59. Novotny, J., Rashin, A. A., and Bruccoleri, R. E. (1988) Criteria that discriminate between native proteins and incorrectly folded models. Proteins: Struct. Funct. Genet. 4, 19–30.

    Article  CAS  Google Scholar 

  60. Novotny, J., Bruccoleri, R. E., and Saul, F. (1989) On the attribution of binding energy in antigen-antibody complexes McPC603, D1.3 and HyHEL-5. Biochemistry 28, 4735–4749.

    Article  PubMed  CAS  Google Scholar 

  61. Vila, J., Williams, R. L., Vásquez, M., and Scheraga, H. A. (1991) Empirical solvation models can be used to differentiate native from near-native conformations of bovine pancreatic trypsin inhibitor. Proteins: Struct. Funct. Genet. 10, 199–218.

    Article  CAS  Google Scholar 

  62. Schiffer, C. A., Caldwell, J. W., Kollman, P. A., and Stroud, R. M. (1993) Protein structure prediction with a combined solvation free energy-molecular mechanics force field. Mol. Simulation 102, 121–149.

    Article  Google Scholar 

  63. Smith, K. C. and Honig, B. (1994) Evaluation of the conformational free energies loops in proteins. Proteins: Struct. Funct. Genet. 18, 119–132.

    Article  CAS  Google Scholar 

  64. Jackson, R. M. and Sternberg, M. J. E. (1994) Application of scaled particle theory to model the hydrophobic effect: implications for molecular association and protein stability. Protein Eng. 7, 371–383.

    Article  PubMed  CAS  Google Scholar 

  65. Martin, A. C. R., Cheetham, J. C., and Rees, A. R. (1989) Modeling antibody hypervariable loops: a combined algorithm. Proc. Natl. Acad. Sci. USA 86, 9268–9272.

    Article  PubMed  CAS  Google Scholar 

  66. Janin, J., Wodak, S., Levitt, M., and Margret, B. (1978) Conformation of amino acid side-chains in proteins. J. Mol. Biol. 125, 357–386.

    Article  PubMed  CAS  Google Scholar 

  67. Ponder, J. W. and Richards, F. M. (1987) Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193, 775–791.

    Article  PubMed  CAS  Google Scholar 

  68. Bhat, T. N., Sasisekheran, V., and Vijayan, M. (1979) An analysis of side-chain conformations in proteins. Int. J. Pept. Protein Res. 13, 170–184.

    Article  PubMed  CAS  Google Scholar 

  69. Benedetti, E., Morelli, G., Nemethy, G. and Scheraga, H. A. (1983) Statistical and energetic analysis of side-chain conformations in oligopeptides. Int. J. Pept. Protein Res. 22, 1–15.

    Article  PubMed  CAS  Google Scholar 

  70. Tuffery, P., Etchebest, C., Hazout, S., and Lavery, R. (1991) A new approach to the rapid determination of protein sidechain conformations. J. Biomol. Struct. Dynam. 8, 1267–1289.

    CAS  Google Scholar 

  71. Blundell, T. L., Sibanda, B. L., Sternberg, M. J. E., and Thornton, J. M. (1987) Knowledge-based prediction of protein structures and the design of novel molecules. Nature 326, 347–352.

    Article  PubMed  CAS  Google Scholar 

  72. Summers, N. L. and Karplus, M. (1989) Construction of side-chains in homology modelling. Application to the C-terminal lobe of rhizopuspepsin. J. Mol. Biol. 216, 991–1016.

    Article  Google Scholar 

  73. McGregor, M. J., Islam, S. A., and Sternberg, M. J. E. (1987) Analysis of the relationship between sidechain conformation and secondary structure in globular proteins. J. Mol. Biol. 198, 295–310.

    Article  PubMed  CAS  Google Scholar 

  74. Dunbrack, R. L. Jr. and Karplus, M. (1993) Backbone-dependent rotamer library for proteins. Application to side-chain prediction. J. Mol. Biol. 230, 543–574.

    Article  PubMed  CAS  Google Scholar 

  75. Dunbrack, R. L. Jr. and Karplus, M. (1994) Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains. Nature. Struct. Biol. 5, 334–339.

    Article  Google Scholar 

  76. Schrauber, H., Eisenhaber, F., and Argos, P. (1993) Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. J. Mol. Biol. 230, 592–612.

    Article  PubMed  CAS  Google Scholar 

  77. Reid, L. S. and Thornton, J. M. (1989) Rebuilding flavodoxin from Ca coordinates: a test study. Proteins: Struct. Funct. Genet. 5, 170–182.

    Article  CAS  Google Scholar 

  78. Bruccoleri, R. E. and Karplus, M. (1987) Prediction of the folding of short polypeptide segments by uniform conformational sampling. Biopolymers 26, 137–168.

    Article  PubMed  CAS  Google Scholar 

  79. Lee, C. and Subbiah, S. (1991) Prediction of protein side-chain conformation by packing optimization. J. Mol. Biol. 217, 373–388.

    Article  PubMed  CAS  Google Scholar 

  80. Holm, L. and Sander, C. (1992) Fast and simple Monte Carlo algorithm for side chain optimization in Proteins: Applications to model building by homology. Proteins: Struct. Funct. Genet. 14, 213–223.

    Article  CAS  Google Scholar 

  81. Desmet, J., DeMaeyer, M., Hazes, B., and Lasters, I. (1992) The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356, 539–542.

    Article  CAS  PubMed  Google Scholar 

  82. Lasters, I. and Desmet, J. (1993) The fuzzy-end elimination theorem: correctly implementing the side chain placement algorithm based on the dead-end elimination theorem. Protein Eng. 6, 717–722.

    Article  PubMed  CAS  Google Scholar 

  83. Koehl, P. and Delarue, M. (1994) Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy. J. Mol. Biol. 239, 249–275.

    Article  PubMed  CAS  Google Scholar 

  84. van Gelder, C. W. G., Leusen, F. J. J., Leunissen, J. A. M., and Noordik, J. H. (1994) A molecular dynamics approach for the generation of complete protein structures from limited coordinate data. Proteins: Struct. Funct. Genet 18, 174–185.

    Article  Google Scholar 

  85. Jeffrey, P. D., Strong, R. K., Sieker, L. C., Chang, C. Y. Y., Campbell, R. L., Petsko, G. A., Haber, E., Margolies, M. N., and Sheriff, S. (1993) 26-10 Fabdigoxin complex: Affinity and specificity due to surface complementarity. Proc. Natl. Acad. Sci. USA 90, 10,310–10,314.

    Article  PubMed  CAS  Google Scholar 

  86. Sheriff, S., Silverton, E. W., Padlan, E. A., Cohen, G. H., Smith-Gill, S. G., Finzel, B. C., and Davies, D. R. (1987) Three dimensional structure of an antibody-antigen complex. Proc. Natl. Acad. Sci. USA 84, 8075–9079.

    Article  PubMed  CAS  Google Scholar 

  87. Viner, R. C. (1989) The derivation of a valence forcefield for carbohydrates. Ph. D. thesis, University of Bath, UK.

    Google Scholar 

  88. Dauber-Osguthorpe, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., and Hagler, A. T. (1988) Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins: Struct. Funct. Genet. 4, 31–47.

    Article  CAS  Google Scholar 

  89. Go, N. and Scheraga, H. A. (1970) Ring closure and local conformational deformations of chain molecules. Macromolecules 3, 178–187.

    Article  CAS  Google Scholar 

  90. Discover. A molecular dynamics program. Biosym Technologies. San Diego.

    Google Scholar 

  91. Rini, J. M., Schulze-Gahmen, U., Wilson, I. A. (1992) Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science 255, 959–965.

    Article  PubMed  CAS  Google Scholar 

  92. Herron, J. N., He, X. M., Ballard, D. W., Blier, P. R., Pace, P. E., Bothwell, A. L. M., Voss, E. W., and Edmundson, A. B. (1989) An auto-antibody to single stranded DNA: comparison of the three-dimensional structures of the unliganded Fab and a deoxynucleotide-Fab complex. Proteins: Struct. Funct. Genet. 5, 271–280.

    Article  CAS  Google Scholar 

  93. Stanfield, R. L., Takimoto-Kamimura, M., Rini, J. M., Profy, A. T., and Wilson, I. A. (1993) Major antigen-induced domain rearrangements in an antibody. Structure 1, 83–93.

    Article  PubMed  CAS  Google Scholar 

  94. Brunger, A. T., Leahy, D. J., Hynes, T. R., and Fox, R. O. (1991) 2.9 Å resolution structure of an anti-dinitrophenyl-spin-label monoclonal antibody. J. Mol. Biol. 221, 231–256.

    Google Scholar 

  95. Tormo, J., Stadler, E., Skern, T., Auer, H., Kanzler, O., Betzel, C., Blaas, D., and Fita, I. (1992) 3-dimensional structure of the Fab fragment of a neutralizing antibody to human rhinovirus serotype-2. Protein Sci. 1, 1154–1161.

    Article  PubMed  CAS  Google Scholar 

  96. Brady, R. L., Edwards, D. J., Hubbard, R. E., Jiang, J.-S., Lange, G., Roberts, S. M., Todd, R. J., Adair, J. R., Emtage, J. S., King, D. J., and Low, D. C. (1992) Crystal structure of a chimeric Fab fragment of an antibody binding tumor cells. J. Mol. Biol. 227, 253–264.

    Article  PubMed  CAS  Google Scholar 

  97. He, X. M., Rueker, F., Casale, E., and Carter, D. C. (1992) Structure of a human monoclonal antibody Fab fragment against gp41 of human immunodeficiency virus type-1. Proc. Natl. Acad. Sci. USA 89, 7154–7158.

    Article  PubMed  CAS  Google Scholar 

  98. Amit, A. G, Mariuzza, R. A., Phillips, S. E. V., and Poljak, R. J. (1986) The three-dimensional structure of an antibody-antigen complex at 2.8 Å resolution. Science 233, 747–753.

    Article  PubMed  CAS  Google Scholar 

  99. Eigenbrot, C., Randal, M., Kossiakoff, A. A., and Presta, L. (1993) X-ray structures of the antigen binding domains from three variants of humanized anti-P185HER2 antibody 4DS and comparison with molecular modeling. J. Mol. Biol. 229, 969–995.

    Article  PubMed  CAS  Google Scholar 

  100. Rini, J. M., Stanfield, R. L., Stura, E. A., Salinas, P. A., Profy, A. T., and Wilson, I. A. (1993) Crystal structure of a human immunodeficiency virus type-1 neutralizing antibody, 50.1, in complex with its V3 loop peptide antigen. Proc. Natl. Acad. Sci. USA 90, 6325–6329.

    Article  PubMed  CAS  Google Scholar 

  101. Stanfield, R. L., Fieser, T. M., Lerner, R. A., and Wilson, I. A. (1990) Crystal structures of an antibody to a peptide and its complex with peptide antigen at 2.8 Å. J. Mol. Biol. 248, 712–719.

    CAS  Google Scholar 

  102. Fan, Z. C., Shan, L., Guddat, L. W., He, X. M., Gray, W. R., Raison, R. L., and Edmundson, A. (1992) 3-Dimensional structure of an Fv from a human-IgM immunoglobulin. J. Mol. Biol. 228, 188–207.

    Article  PubMed  CAS  Google Scholar 

  103. Rose, D. R., Przybyska, M., To, R. J., Kayden, C. S., Oomen, R. P., Vorberg, E., Young, M. N., and Bundle, D. R. (1993) Crystal structure at 2.45 Å resolution of a monoclonal Fab specific for the Brucella-A cell wall polysaccharide moiety. Protein Sci. 2, 1106–1113.

    Article  PubMed  CAS  Google Scholar 

  104. Ely, K. R., Wood, M. K., Rajan, S. S., Hodsdon, J. M., Abola, E. E., Deutsch, H. F., and Edmundson, A. B. (1985) Unexpected similarities in the crystal-structures of the MCG light-chain dimer and its hybrid with the WEIR protein. Mol. Immunol. 22, 93–100.

    Article  PubMed  CAS  Google Scholar 

  105. Tulip, W. R., Varghese, J. N., Laver, W. G., Webster, R. G., and Coleman, P. M. (1992) Refined crystal structure of the Influenza virus N9 neuraminidase-NC41 Fab complex. J. Mol. Biol. 227, 122–148.

    Article  PubMed  CAS  Google Scholar 

  106. Epp, O., Lattman, E, E., Schiffer, M., Huber, R., and Palm, W. (1975) The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein \REI refined at 2.0 Å resolution. Biochemistry 14, 4943–4952.

    Article  PubMed  CAS  Google Scholar 

  107. Lascombe, M. B., Alzari, P. M., Boulot, G., Saludjran, P., Tougard, P., Berek, C., Haba, S., Rosen, E. M., Nisonoff, A., and Poljak, R. J. (1989) Three-dimensional structure of Fab R19.9, a monoclonal murine antibody specific for the p-azobenzenearsonate group. Proc. Natl. Acad. Sci. USA 86, 607–611.

    Article  PubMed  CAS  Google Scholar 

  108. Marquart, M., Diesenhofer, J., and Huber, R. (1980) Crystallographic refinement and atomic models of the intact immunoglobulin KOL and its antigen-binding fragment at 3.0 Å and 1.9 Å resolution. J. Mol. Biol. 141, 369–391.

    Article  PubMed  CAS  Google Scholar 

  109. Mainhart, C. R., Potter, M., and Feldmann, R. J. (1984) A refined model for the variable domains (Fv) of the J539 β(1,6)-D-galactan-binding immunoglobulin. Mol. Immunol. 21, 469–479.

    Article  PubMed  CAS  Google Scholar 

  110. Segal, D., Padlan, E. A., Cohen, G., Rudikoff, S., Potter, M., and Davies, D. R. (1974) The three-dimensional structure of a phosphocholine binding mouse immunoglobulin Fab and the nature of the binding site. Proc. Natl. Acad. Sci. USA 71, 4298–4302

    Article  PubMed  CAS  Google Scholar 

  111. Furey, W., Jr., Wang, B. C., Yoo, C. S., and Sax, M. (1983) Structure of a novel Bence-Jones protein (rhe) fragment at 1.6 Å resolution. J. Mol. Biol. 167, 661–692.

    Article  PubMed  CAS  Google Scholar 

  112. Padlan, E. A., Silverton, E. W., Sheriff, S., Cohen, G. H., Smith-Gill, S. J., and Davies, D. R. (1989) Structure of an antibody-antigen complex: crystal structure of the HyHEL-10_Fab-lysozyme complex. Proc. Natl. Acad. Sci. USA 86, 5938–5942.

    Article  PubMed  CAS  Google Scholar 

  113. Ely, K. R., Herron, J. N., Harker, M., and Edmundson, A. B. (1989) Three-dimensional structure of a light chain dimer crystallized in water. Conformational flexibility of a molecule in two crystal forms. J. Mol. Biol. 210, 601–615.

    Article  PubMed  CAS  Google Scholar 

  114. Herron, J. N., He, X. M., Mason, M. L., Voss, E. W., and Edmundson, A. B. (1989) Three-dimensional structure of a fluorescein Fab complex crystallized in 2-methyl-2,4pentanediol. Proteins: Struct. Funct. Genet. 5, 271–280.

    Article  CAS  Google Scholar 

  115. Rose, D. R., Strong, R. K., Margolies, M. N., Gefter, M. L., and Petsko, G. A. (1990) Crystal structure of the antigen-binding fragment of the murine anti-arsonate monoclonal antibody 36–71 at 2.9 Å resolution. Proc. Natl. Acad. Sci. USA 87, 338–342.

    Article  PubMed  CAS  Google Scholar 

  116. Saul, F. A. and Poljak, R. J (1992) Crystal structure of human immunoglobulin fragment Fab New at 2.0 Å Resolution. Proteins: Struct. Funct. Genet. 14, 363–371.

    Article  CAS  Google Scholar 

  117. Saul, F. A. and Poljak, R. J. (1992) Crystal structure of the Fab fragment from the myeloma immunoglobulin IgG HIL at 1.8 Å resolution. Preliminary structure entry deposited in the Brookhaven protein data bank. In preparation.

    Google Scholar 

  118. Jeffrey, P. D. (1989) The structure and specificity of immunoglobulins. Ph.D. thesis. University of Oxford, UK.

    Google Scholar 

  119. Kraulis, J. (1991) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystall. 24, 946–950.

    Article  Google Scholar 

  120. Laskowskt, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993) PROCHECK—A program to check the stereochemical quality of protein structures. J. Appl. Crystall. 26, 283–291.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Humana Press Inc.

About this protocol

Cite this protocol

Webster, D.M., Rees, A.R. (1995). Molecular Modeling of Antibody-Combining Sites. In: Paul, S. (eds) Antibody Engineering Protocols. Methods In Molecular Medicine™, vol 51. Humana Press. https://doi.org/10.1385/0-89603-275-2:17

Download citation

  • DOI: https://doi.org/10.1385/0-89603-275-2:17

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-275-0

  • Online ISBN: 978-1-59259-538-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics