Skip to main content

Chemical Synthesis of the Aspartic Proteinase from Human Immunodeficiency Virus (HIV)

  • Protocol
Peptide Analysis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 36))

  • 995 Accesses

Abstract

An aspartic proteinase encoded by the human immunodeficiency virus (HIV) is expressed during the course of infection leading to acquired immunodeficiency syndrome (AIDS). This enzyme is essential for viral infectivity and proliferation; it selectively cleaves all viral protein components from a “polyprotein” precursor molecule (1). It is essential for the production of fully competent virus and is unique to a class of retrovirally encoded aspartic proteinases with no apparent counterpart in the mammalian realm. As such, it is an ideal target for design of specific inhibitors as antiviral therapeutic agents for the treatment and perhaps cure of AIDS. Critical to this effort has been availability of the enzyme for structure-function analysis. The three-dimensional structure of the enzyme, derived from X-ray crystallographic efforts, was determined in 1989 by Wlodawer et al. (2). Diffraction-quality crystals of the HIV-l proteinase were obtained from chemically synthesized protein corresponding to the sequence of the SF-2 isolate from an AIDS-associated retrovirus (ARV-2) as reported by Sanchez-Pescador et al. (3). This particular protein was synthesized using t-Boc/benzyl strategy starting with Phe-PAM resin following a highly optimized synthetic regimen described previously by Schneider and Kent. In their synthesis, cysteine occurring at positions 67 and 95 in the native sequence was replaced with α-aminobutyric acid (Abu), an isosteric analog of cysteine, i.e., a methyl group replaces the thiol moiety (4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Spiral binding cover Book
USD 169.99
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kohl, N. E., Emini, E. A., Schleif, W. A., Davis, L. J, Heimbach, J. C., Dixon, R. A. F., Scolnick, E. M., and Sigal, I. S. (1988) Active human immunodeficiency virus protease is required for viral infectivity. Proc. Natl. Acad. Sci. USA 85, 4686–4690.

    Article  PubMed  CAS  Google Scholar 

  2. Wlodawer, A., Miller, M., Jaskolski, M., Sathyanarayana,, Baldwin, E., Weber, I. T., Selk, L M., Clawson, L., Schneider, J., and Kent, S. (1989) Conserved folding in retroviral proteases: crystal strucuture of a synthetic HIV-1 proteinase. Science 245, 616–621.

    Article  PubMed  CAS  Google Scholar 

  3. Sanchez-Pescador, R., Power, M. D., Barr, P. J., Steimer, K. S., Stempien, M. M., Brown-Shimer, S. L., Gee, W. W., Renard, A., Levy, J. A., Dina, D., and Luciw, P. A. (1985) Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science 227, 484–492.

    Article  PubMed  CAS  Google Scholar 

  4. Schneider, J. and Kent, S. B. H. (1988) Enzymatic activity of a synthetic 99 residue protein corresponding to the putative HIV-1 protease. Cell 54, 363–367.

    Article  PubMed  CAS  Google Scholar 

  5. Nutt, R. F., Brady, S. F., Darke, P. L., Ciccarone, T. M., Colton, D., Nutt, E. M., Rodkey, J. A., Bennerr, D., Waxman, L. H., Sigal, I. S, Anderson, P S., and Veber, D F. (1988) Chemical synthesis and enzymatic activity of a 99-residue peptide with a sequence proposed for the human deficiency virus protease Proc Natl. Acad. Sci. USA 85, 7129–7133.

    Article  PubMed  CAS  Google Scholar 

  6. Copeland, T D and Oroszlan, S. (1988) Genetic locus, primary structure, and chemical synthesis of Human Immunodeficiency Virus protease. Gene Anal Techn. 5, 109–115

    Article  CAS  Google Scholar 

  7. Wang, S. S. (1973) p-Alkoxybenzyl alcohol resin and p-Alkoxybenzyloxy-carbonylhydrazide resin for solid phase synthesis of protected peptide fragments. J. Am Chem. Soc 95, 1328–1333.

    PubMed  CAS  Google Scholar 

  8. Fields, G. B. and Fields, G. (1991) Solvation effects in solid phase peptide synthesis. J. Am. Chem. Soc. 113, 4202–4207.

    Article  CAS  Google Scholar 

  9. Otteson, K. M., MacDonald, R. L., Noble, R. L., and Hoeprich, P. D (1991) U.V. deprotection monitoring with FastMoc™-SPPS on the Model 431A peptide synthesizer. Applied Biosystems, Inc., Research News, Peptide Synthesis, December 1991.

    Google Scholar 

  10. FastMoc chemistry: HBTU activation in peptide synthesis on the Model 43 1 A, User Bulletin No. 33, Applied Biosystems, Inc., November 1990

    Google Scholar 

  11. Dourtglou, V., Ziegler, J. C, and Gross, B (1978) L’Hexafluoro-phosphate de O-Benzotriazolyl-N,N-tetramethyluronium: Un Reactif de Couplage Peptidique Nouveau et Efficace. Tetrahedron Lett. 15, 1269–1272.

    Article  Google Scholar 

  12. Fields, G, Lloyd, D. H, Macdonald, R. L., Otteson, K. M., and Noble, R L (1991) HBTU activation for automated Fmoc solid-phase peptide synthesis Peptide Res 4, 95–101

    CAS  Google Scholar 

  13. Gausepohl, H., Pieles, U., and Frank, R W. (1992) Schiff base analog formation during in situ activation by HBTU and TBTU, in Peptides · Chemistry and Biology Proceedings of the 12th American Peptide Symposium (Smith, J. A and Rivier, J. E., eds.), Escom, Leiden, pp 523,524.

    Google Scholar 

  14. Knorr, R., Trzeciak, A., Bannwarth, W., and Gillessen, D. (1989) New coupling reagents in peptide chemistry. Peptides 1988: Proceedings of the 20th European Peptide Symposium (Jung, G. and Bayer, E., eds.), W. de Gruyter, Berlin, pp. 37–39

    Google Scholar 

  15. King, D. S., Fields, C. G., and Fields, G. B. (1990) A cleavage method which minimizes side reactions following Fmoc solid-phase peptide synthesis. Int. J. Peptide Protein Rex 36, 255–266.

    Article  CAS  Google Scholar 

  16. Application in SDS-PAGE, Electroblotting and protein sequencing, User Bulletin No. 42 Applied Biosystems, April 1991.

    Google Scholar 

  17. Tomasselli, A. G., Olsen, M., Hui, J., Staples, D. J., Sawyer, T., Heimikson, R. L., and Tomich, C. C. (1990) Substrate analogue inhlbition and active site titration of purified recombinant HIV-1 protease Biochemistry 29, 264–269.

    Article  PubMed  CAS  Google Scholar 

  18. Rittenhouse, J., Turon, M. C., Helfrich, R. J., Albrecht, K. S., Weigl, D., Simmer, R. L., Mordini, F., Erickson, J., and Kohlbrenner, W. E. (1990) Affinity purification of HIV-1 and HIV-2 proteases from recombinant E coli strains using pepstatin-agarose. Biochem. Biophys Res Commun 171, 60–66.

    Article  PubMed  CAS  Google Scholar 

  19. Nashed, N. T., Louis, J. M., Sayer, J. M., Wondrak, E M, Mora, P. T., Oroszlan, S., and Jerina, D. M. (1989) Continuous spectra-photometeric assay for retroviral proteases of HIV-1 and AMV. Bichem. Biophys. Res. Comm. 163, 1079–1085.

    Article  CAS  Google Scholar 

  20. Merrifield, B. (1986) Solid phase synthesis. Science 232, 341–347.

    Article  PubMed  CAS  Google Scholar 

  21. Atherton, E. and Sheppard, R. D. (1989) Solid Phase Synthesis—A Practical Approach. IRL Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hoeprich, P.D. (1994). Chemical Synthesis of the Aspartic Proteinase from Human Immunodeficiency Virus (HIV). In: Dunn, B.M., Pennington, M.W. (eds) Peptide Analysis Protocols. Methods in Molecular Biology, vol 36. Humana Press. https://doi.org/10.1385/0-89603-274-4:287

Download citation

  • DOI: https://doi.org/10.1385/0-89603-274-4:287

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-274-3

  • Online ISBN: 978-1-59259-523-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics