Skip to main content

NMR Spectroscopy of Peptides and Proteins

  • Protocol
Peptide Analysis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 36))

Abstract

In recent years, a wide range of Nuclear Magnetic Resonance (NMR) techniques has become available for investigating the structure of peptides and proteins in solution, and their interactions with other molecules. These powerful methods have an important role to play in furthering our knowledge of the molecular basis of such processes as protein folding and molecular recognition. NMR spectroscopy is uniquely positioned to investigate these problems, being one of the few techniques available for determining high-resolution structures of biomolecules in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Spiral binding cover Book
USD 169.99
Price excludes VAT (USA)
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wüthrich, A (1986) NMR of Proteins and Nucleic Acids Wiley-Interscience, New York.

    Google Scholar 

  2. Croasmun W. R. and Carlson R. M. K. (eds.) (1987) Two-Dimensional NMR Spec-troscopy. Applications for Chemists and Biochemists. VCH, New York.

    Google Scholar 

  3. Oppenheimer, N. J. and James, T. L. (eds.) (1989) Nuclear magnetic resonance Part A. Spectral techniques and dynamics, in Methods in Enzymology, vol 176, Academic, San Diego.

    Google Scholar 

  4. Oppenheimer, N J and James, T. L. (eds.) (1989) Nuclear magnetic resonance. Part B. Structure and mechanism, in Methods in Enzymology, vol. 177, Academtc, San Diego

    Google Scholar 

  5. Clore G. M. and Gronenborn A. M. (1989) Determination of three-dimensional structures of proteins and nucleic acids in solution by nuclear magnetic resonance spectroscopy. CRC Crit. Rev. Biochem. Mol. 24, 479–564

    Article  CAS  Google Scholar 

  6. Fesik S. W. (1991) NMR studies of molecular complexes as a tool m drug design. J. Med Chem. 34, 2937–2945.

    Article  PubMed  CAS  Google Scholar 

  7. Derome, A. E. (1987) Modern NMR Techniques for Chemistry Research. Pergamon, Oxford.

    Google Scholar 

  8. Homans S. W. (1992) A Dictionary of Concepts in NMR. Clarendon, Oxford.

    Google Scholar 

  9. Wilthrich, A (1976) NMR in Biological Research: Peptides and Proteins. North-Holland Publishing, Amsterdam.

    Google Scholar 

  10. Ernst, R. R., Bodenhausen, G., and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Clarendon, Oxford.

    Google Scholar 

  11. Dyson, H. J. and Wright, P. E. (1991) Defining solution conformations of small linear peptides. Annu Rev. Biophys. Chem. 20, 519–538

    Article  CAS  Google Scholar 

  12. Clore, G. M. and Gronenborn, A. M. (1991) Applications of three-and four-dimensional heteronuclear NMR spectroscopy to protein structure determination. Prog NMR Spectroscopy 23, 43–92.

    Article  CAS  Google Scholar 

  13. Oppenheimer, N. J. (1989) Sample preparation. Meth. Enzymol. 176, 78–89

    Article  PubMed  CAS  Google Scholar 

  14. Brown, L. R. and Wtithrich, A (1981) Melittin bound to dodecylphosphocholine micelles 1H-NMR assignments and global conformational features. Biochim. Biophys. Actu 647, 95–111.

    Article  CAS  Google Scholar 

  15. Mehlkopf, A. F., Korbee, D., Tiggelman, T. A., and Freeman, R. (1984) Sources of ti noise in two-dimensional NMR. J. Magn. Reson. 58, 315–323.

    CAS  Google Scholar 

  16. Anglister, J., Grzesiek, S., Ren, H., Klee, C.B., and Bax, A. (1993) Isotope-edited multidimensional NMR of calcineurin B in the presence of the non-deuterated detergent CHAPS. J. Biomol. NMR 3, 121–126.

    Article  PubMed  CAS  Google Scholar 

  17. Morris, G. A. (1992) Systematic sources of signal irreproducibihty and t1 noise in high-field NMR spectrometers. J. Mugn. Reson. 100, 316–328

    CAS  Google Scholar 

  18. Marion, D. and Bax, A. (1988) Baseline distortion in real Fourier transform NMR spectra. J. Magn. Reson. 79, 352–356.

    Google Scholar 

  19. Hoult, D. I., Chen, C.-N., Eden, H., and Eden, M. (1983) Elimination of baseline artifacts in spectra and their integrals. J. Mugn. Resort. 51, 110–117.

    CAS  Google Scholar 

  20. Conover, W. W. (1984) Practical guide to shimming superconducting NMR magnets, in Topics in Carbon-13 NMR Spectroscopy, vol. 4 (Levy, G., ed.), Wiley, New York, pp, 37–57.

    Google Scholar 

  21. Zuiderweg, E. R. P., Hallenga, K., and Olejniczak, E. T. (1986) Improvement of 2D NOE spectra of biomacromolecules in H20 solution by coherent suppression of the solvent resonance. .J. Magn. Reson. 70, 336–343.

    CAS  Google Scholar 

  22. Hore, P. J. (1989) Solvent suppression. Meth. Enzymol. 176, 64–77.

    Article  PubMed  CAS  Google Scholar 

  23. Lindon, J. and Ferrige, A. C. (1980) Digitisation and data processing in Fourier transform NMR. Prog. NMR Spectrosc. 14, 27–66.

    Article  CAS  Google Scholar 

  24. Otting, G., Widmer, H., Wagner, G., and Wtithrich, K. (1986) Origin of t1 and t2 ridges in 2D NMR spectra and procedures for suppression. J. Mugn. Reson. 66, 187–193.

    CAS  Google Scholar 

  25. Marion, D. and Bax, A. (1989) Baseline correction of 2D FT NMR spectra using a simple linear prediction extrapolation of the time-domain data. J. Mugn. Reson. 83, 205–211.

    CAS  Google Scholar 

  26. Martin, M. L., Delpuech, J.-J., and Martin G. J. (1980) Practical NMR Spec-troscopy. Heyden, London, pp. 244–290.

    Google Scholar 

  27. Bundi, A. and Wiithrich, K. (1979) ’H-NMR parameters of the common amino acid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers 18, 285–297.

    Article  CAS  Google Scholar 

  28. Sonnichsen, F. D, VanEyk, J. E., Hodges, R. E., and Sykes, B. D. (1992) Effect of trifluoroethanol on protein secondary structure: an NMR and CD study using a synthetic actin peptide. Biochemistry 31, 8790–8798.

    Article  PubMed  CAS  Google Scholar 

  29. Dyson, H. J., Merutka, G., Waltho, J. P., Lerner, R. A., and Wright, P. E. (1992) Folding of peptide fragments comprising the complete sequence of proteins. Models for initiation of protein folding. I. Myohemerythrin. J. Mol. Biol. 226, 795–817.

    Article  PubMed  CAS  Google Scholar 

  30. Jardetzky, 0. and Roberts, G (1981) NMR in Molecular Biology. Academic, New York, p. 166.

    Google Scholar 

  31. McIntosh, L. P. and Dahlquist, F. W. (1990) Biosynthetic incorporation of 15N and t3C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q. Rev. Biophys. 23, 1–38.

    Article  PubMed  CAS  Google Scholar 

  32. Kay, L. E, Clore, G. M., Bax, A., and Gronenborn, A M (1990) Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 β in solution. Science 249, 411–414.

    Article  PubMed  CAS  Google Scholar 

  33. Bax, A., Sparks, S. W., and Torchia, D. A. (1989) Detection of insensitive nuclei. Meth. Enzymol. 176, 134–150.

    Article  PubMed  CAS  Google Scholar 

  34. Hull, W. E. and Sykes, B D (1976) Fluorine-19 nuclear magnetic resonance study of fluorotyrosine alkaline phosphatase: the influence of zinc on protem structure and a conformational change induced by phosphate binding. Biochemistry 15, 1535–1543.

    Article  PubMed  CAS  Google Scholar 

  35. Guntert, P. and Wuthrich, K. (1992) FLATT—A new procedure for htgh-quahty baseline correction of multidimensional NMR spectra. J. Mugn. Reson. 96, 403–407.

    Google Scholar 

  36. Marion, D., Ikura, K., and Bax, A. (1989) Improved solvent suppression m one and two dimensional NMR spectra by convolution of time domain data. J. Mugn. Reson. 84, 425–430.

    CAS  Google Scholar 

  37. Manoleras, N. and Norton, R. S. (1992) Spectral processing methods for the removal of tt noise and solvent artifacts from NMR spectra. J. Biomol. NMR 2, 485–494.

    Article  CAS  Google Scholar 

  38. Zhu, G. and Bax, A. (1992) Two-dimensional linear prediction for signals truncated in both dimensions. .J. Magn. Reson. 98, 192–199.

    CAS  Google Scholar 

  39. Keeler, J. and Neuhaus, D. (1985) Comparison and evaluation of methods for two-dimensional NMR spectra with absorption mode lineshapes. J. Mugn. Reson. 63, 454–472.

    CAS  Google Scholar 

  40. Miiller, N., Ernst, R. R., and Wuthrich, K. (1986) Multiple-quantum-filtered two-dimensional correlated NMR spectroscopy of proteins. J. Am. Chem. Soc. 108, 6482–6492.

    Article  Google Scholar 

  41. Braunschweiler, L. and Ernst, R. R. (1983) Coherence transfer by isotropic mixing: application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528.

    CAS  Google Scholar 

  42. Chazin, W. and Wright, P. E. (1987) A modified strategy for identification of 1H spin systems in proteins. Biopolymers 26, 973–977.

    Article  PubMed  CAS  Google Scholar 

  43. Pallaghy, P., Duggan, M., Pennington, M. W., and Norton, R. S (1993) Three-dimensional structure in solution of the calcium channel blocker w-con-otoxin. J. Mol. Biol. 234, 405–420.

    Article  PubMed  CAS  Google Scholar 

  44. Bax, A. and Davis, D. G. (1985) Practical aspects of two-dimensional transverse NOE spectroscopy. J Magn. Reson. 63, 207–213

    CAS  Google Scholar 

  45. Macura, S., Huang, Y., Suter, D., and Ernst, R. R. (1981) Two-dimensional chemical exchange and cross relaxatron spectroscopy of coupled nuclear spms J. Magn. Reson. 43, 259–281.

    CAS  Google Scholar 

  46. Neuhaus, D. and Williamson, M. (1989) The Nuclear Overhauser ESfect in Structural and Conformatlonal Analysw VCH, New York.

    Google Scholar 

  47. Kalk, A and Berendsen, H J. (1975) Proton magnetic relaxation and spin diffusion in proteins. J. Magn. Reson. 24, 343–366.

    Google Scholar 

  48. Havel, T. F. (1991) An evaluation of computational strategies for use m the determination of protem structure from distance constraints obtained by nuclear magnetic resonance. Prog Biophys Molec. Biol. 56, 43–78.

    Article  CAS  Google Scholar 

  49. Nilges, M., Habazettl, J., Brunger, A. T., and Holak, T. A (1991) Relaxation matrix refinement of the solution structure of squash trypsm inhibitor. J. Mol Biol. 219, 499–510.

    Article  PubMed  CAS  Google Scholar 

  50. Wilcox, G. R., Fogh, R. H., and Norton, R. S. (1993) Refinement of the solution structure of the sea anemone neurotoxin ShI. J. Biol. Chem. 268, 24,707–24,719.

    PubMed  CAS  Google Scholar 

  51. Dyson, H. J., Rance, M, Houghton, R. H., Lerner, R A., and Wright, P. E. (1988) Folding of immunogenic peptide fragments of proteins m water solution. I. Sequence requirements for the formation of a reverse turn J Mol. Biol. 201, 161–200

    Article  PubMed  CAS  Google Scholar 

  52. Cuba Foundation Symposia 161 (1991) Proceedings of the symposium on protem conformation, held Jan. 22–24, 1991, at the Cuba Foundation, London, England. John Wiley and Sons, Chichester, England.

    Google Scholar 

  53. Barbato, G., Ikura M., Kay, L. E., Pastor, R W., and Bax, A. (1992) Backbone dynamics of calmodulm studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31, 5269–5278.

    Article  PubMed  CAS  Google Scholar 

  54. Peng, J. W. and Wagner, G. (1992) Mapping of the spectral densities of the N—H bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry 31, 8571–8586.

    Article  PubMed  CAS  Google Scholar 

  55. Wishart, D. S., Sykes, B. D., and Richards, F. M. (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31, 1647–1651.

    Article  PubMed  CAS  Google Scholar 

  56. Spera, S. and Bax, A. (1991) Empirical correlation between protein backbone conformation and Ca and Cl3 13C nuclear magnetic resonance chemical shifts. J. Am. Chem. Sot. 113, 5490–5492.

    Article  CAS  Google Scholar 

  57. Morton, C. J., Simpson, R. J., and Norton, R. S. (1994) Solution structure of synthetic peptides corresponding to the c-terminal helix of interleukin-6. Eur. J. Biochem. 219, 97–107.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Hinds, M.G., Norton, R.S. (1994). NMR Spectroscopy of Peptides and Proteins. In: Dunn, B.M., Pennington, M.W. (eds) Peptide Analysis Protocols. Methods in Molecular Biology, vol 36. Humana Press. https://doi.org/10.1385/0-89603-274-4:131

Download citation

  • DOI: https://doi.org/10.1385/0-89603-274-4:131

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-274-3

  • Online ISBN: 978-1-59259-523-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics