Skip to main content

Formation of Disulfide Bonds in Synthetic Peptides and Proteins

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 35))

abstract

Disulfide bridges play a crucial role in the folding and structural stabilization of many important extracellular peptide and protein molecules, including hormones, enzymes, growth factors, toxins, and immunoglo-bulins (110). In addition, the artificial introduction of extra disulfide bridges into peptides or proteins allows the creation of conformational constraints that can improve biological activity (1115) or confer ther-mostability (5, 1619). Given this intrinsic biological interest, disulfide-con-taining peptides have long been attractive targets for chemical synthesis. Starting with the pioneering work of du Vigneaud on oxytocin (20), the challenge to reproduce and engineer increasingly complex arrays of disulfide bridges as are found in natural peptides and proteins (7, 10, 2123) has stimulated the efforts and ingenuities of many peptide chemists. Table 1 provides a representative, but by no means exhaustive, listing of noteworthy syntheses of peptides or small proteins with one or more disulfides. The methods can be readily generalized to analogs in which cysteine residues are replaced by homologs, such as homocysteine, or by sterically restricted derivatives, such as penicillamine (β,β-dimethylcysteine).

Table 1 Representative Examples of Synthetic Disulfide-Containing Peptides and Proteins

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Schulz, G. E. and Schirmer, R H (1979) Principles of Protein Structure. Springer-Verlag, New York, pp 53–55.

    Google Scholar 

  2. Richardson, J. S (1981) The anatomy and taxonomy of protein structure Adv Prot Chem. 34, 167–339.

    CAS  Google Scholar 

  3. Thornton, J. M. (1981) Disulfide bridges in globular proteins J Mol. Biol 151, 261–287.

    CAS  PubMed  Google Scholar 

  4. Creighton, T. E (1986) Disulfide bonds as probes of protein folding pathways. Methods Enzymol. 131, 83–106.

    CAS  PubMed  Google Scholar 

  5. Creighton, T. E. (1988) Disulphide bonds and protein stability BioEssays 8, 57–63

    CAS  PubMed  Google Scholar 

  6. Srinivasan, N., Sowdhamini, R, Ramakrishnan, C, and Balaram, P (1990) Conformations of disulfide bridges in proteins. Int. J. Peptide Protein Res 36, 147–155, and references cited therein.

    CAS  Google Scholar 

  7. Branden, C. and Tooze, J. (1991) Introduction to Protein Structure. Garland, New York.

    Google Scholar 

  8. Rizo, J. and Gierasch, L. M. (1992) Constrained peptides: models of bioactive peptides and protein substructures. Annu. Rev. Biochem. 61, 387–418.

    CAS  PubMed  Google Scholar 

  9. Creighton, T. E. (ed.) (1992) Protein Folding. W. H. Freeman, New York, especially Chapter 7, Folding pathways determined using disulfide bonds, by Creighton, T. E., pp. 301–351.

    Google Scholar 

  10. Creighton, T. E. (1993) Proteins-Structure and Molecular Properties, 2nd ed, W. H. Freeman, New York.

    Google Scholar 

  11. Schiller, P. W., Eggimann, B., DiMaio, J., Lemieux, C, and Nguyen, T M-D. (1981) Cyclic enkephalin analogs containing a cystine bridge. Biochem Biophys. Res. Commun. 101, 337–343.

    CAS  PubMed  Google Scholar 

  12. Hruby, V. J. (1982) Conformational restrictions of biologically active peptides via amino acid side chain groups. Life Sciences 31, 189–199.

    CAS  PubMed  Google Scholar 

  13. Hruby, V J, Al-Obeidi, F., and Kazmierski, W. (1990) Emerging approaches in the molecular design of receptor-selective peptide ligands. conformational, topographical and dynamic considerations. Biochem J. 268, 249–262.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Bolin, D R., Cottrell, J., Garippa, R., O’Neill, N., Simko, B., and O’Donnell, M. (1993) Structure-activity studies of vasoactive intestinal peptide (VIP), cyclic disulfide analogs. Int. J. Peptide Protein Res. 41, 124–132, and references cited therein

    CAS  Google Scholar 

  15. Pohl, M., Ambrosius, D., Grotzinger, J., Kretzschmar, T, Saunders, D., Wollmer, A., Brandenburg, D, Bitter-Suermann, D., and Hocker, H. (1993) Cyclic disul-fide analogues of the complement component C3a. Synthesis and conformational investigations. Int. J. Peptide Protein Res. 41, 362–375.

    CAS  Google Scholar 

  16. Wetzel, R. (1987) Harnessing disulfide bonds using protein engineering. Trends Biochem. Sci. 12, 478–482, and references cited therein.

    CAS  Google Scholar 

  17. Hodges, R. S., Zhou, N. E., Kay, C. M, and Semchuk, P. D. (1990) Synthetic model proteins: contribution of hydrophobic residues and disulfide bonds to protein stability. Peptide Res 3, 123–137, and other recent contributions from this research team.

    CAS  Google Scholar 

  18. Kanaya, S., Katsuda, C, Kimura, S., Nakai, T., Kitakuni, E., Nakamura, H., Katayanagi, K., Morikawa, K., and Ikehara, M. (1991) Stabilization of Escherichia coli ribonuclease H by introduction of an artificial disulfide bond. J. Biol. Chem. 266, 6038–6044, and references cited therein.

    CAS  PubMed  Google Scholar 

  19. Shortle, D. (1992) Mutational studies of protein structures and their stabilities. Quart. Rev. Biophys. 25, 205–250, and references cited therein.

    CAS  Google Scholar 

  20. du Vigneaud, V., Ressler, C, Swan, J. M., Roberts, C. W., Katsoyannis, P G., and Gordon, S. (1953) The synthesis of a peptide with the hormonal activity of oxytocin J. Am. Chem. Soc. 75, 4879–4880.

    Google Scholar 

  21. Kikuchi, T, Némethy, G., and Scheraga, H. A. (1986) Spatial geometric arrangements of disulfide-crosslinked loops in proteins J Comp. Chem. 7, 67–88

    CAS  Google Scholar 

  22. Mao, B. (1989) Molecular topology of multiple-disulfide polypeptide chains J. Am. Chem. Soc. 111, 6132–6136.

    CAS  Google Scholar 

  23. Warne, N. W. and Laskowski, Jr., M (1990) All fifteen possible arrangements of three disulfide bridges in proteins are known. Biochem. Biophys. Res. Commun 172, 1364–1370.

    CAS  PubMed  Google Scholar 

  24. Hope, D. B., Murti, V V S, and du Vigneaud, V. (1962) A highly potent analogue of oxytocin, desamino-oxytocin J Biol. Chem. 237, 1563–1566

    CAS  PubMed  Google Scholar 

  25. Hruby, V. J., Upson, D. A, and Agarwal, N. S. (1977) Comparative use of benzhydrylamine and chloromethylated resins in solid-phase synthesis of carboxamide terminal peptides. Synthesis of oxytocin derivatives. J. Org. Chem. 42, 3552–3556.

    CAS  Google Scholar 

  26. Live, D. H., Agosta, W. C, and Cowburn, D. (1977) A rapid, efficient synthesis of oxytocin and 8-arginine-vasopressin. Comparison of benzyl, p-methoxybenzyl, and p-methylbenzyl as protecting groups for cysteine J Org. Chem. 42, 3556–3561.

    CAS  PubMed  Google Scholar 

  27. Hruby, V. J. and Smith, C. W. (1987) Structure-activity relationships of neurohypo-physeal peptides, in The Peptides-Analysis, Synthesis, Biology, vol. 8 (Udenfriend, S. and Meienhofer, J., eds.; Smith, C. W., vol. ed.), Academic, New York, pp. 77–207.

    Google Scholar 

  28. Jost, K., Lebl, M, and Brtník, F. (eds.) (1987) Handbook of Neurohypophyseal Hormone Analogs, vols. I and II, CRC, Boca Raton, FL.

    Google Scholar 

  29. Manning, M. and Sawyer, W. H. (1993) Design, synthesis and some uses of receptor-specific agonists and antagonists of vasopressin and oxytocin. J Receptor Res. 13, 195–214

    CAS  Google Scholar 

  30. Yamashiro, D. and Li, C. H. (1973) Synthesis of a peptide with full somatostatin activity. Biochem. Biophys. Res. Commun. 54, 882–888.

    CAS  PubMed  Google Scholar 

  31. Coy, D. H., Coy, E J, Arimura, A., and Schally, A V. (1973) Solid phase synthesis of a growth hormone-release inhibiting factor. Biochem. Biophys. Res. Commun 54, 1267–1273.

    CAS  PubMed  Google Scholar 

  32. Rivier, J. E. F. (1974) Somatostatin. Total solid phase synthesis. J Am Chem Soc. 96, 2986–2992.

    CAS  PubMed  Google Scholar 

  33. Rivier, J., Kaiser, R., and Galyean, R. (1978) Solid-phase synthesis of somatostatin and glucagon-selective analogs in gram quantities. Biopolymers 17, 1927–1938, and references cited therein.

    CAS  Google Scholar 

  34. Chang, C.-D., Felix, A. M., Jimenez, M. H., and Meienhofer, J. (1980) Solid-phase synthesis of somatostatin using mild base cleavage of Nα-9-fluorenyl-methyloxycarbonylamino acids. Int. J. Peptide Protein Res. 15, 485–494.

    CAS  Google Scholar 

  35. Moroder, L, Gemeiner, M, Goehring, W., Jaeger, E., Thamm. P., and Wunsch, E. (1981) New synthesis of somatostatin according to the S-tert-butylthiocysteine procedure. Biopolymers 20, 17–37.

    CAS  PubMed  Google Scholar 

  36. Chino, N., Yoshizawa-Kumagaye, K, Noda, Y., Watanabe, T. X., Kimura, T., and Sakakibara, S. (1986) Synthesis and biological properties of antiparallel and parallel dimers of a-human atrial natriuretic peptide. Biochem Biophys Res Commun. 141, 665–672.

    CAS  PubMed  Google Scholar 

  37. Wade, J D, Fitzgerald, S. P., McDonald, M. R, McDougall, J. G., and Tregear, G. W (1986) Solid-phase synthesis of α-human atrial natriuretic factor: comparison of the Boc-polystyrene and Fmoc-polyamide methods. Biopolymers 25, S21–S37.

    CAS  PubMed  Google Scholar 

  38. Lyle, T. A., Brady, S. F., Ciccarone, T. M., Colton, C. D., Paleveda, W. J., Veber, D. F., and Nutt, R. F. (1987) Chemical synthesis of rat atrial natriuretic factor by fragment assembly on a solid support J Org Chem. 52, 3752–3759, and references cited therein.

    CAS  Google Scholar 

  39. Akaji, K., Fujino, K., Tatsumi, T, and Kiso, Y. (1992) Regioselective double disulfide formation using silylchloride-sulfoxide system. Tetrahedron Lett 33, 1073–1076.

    CAS  Google Scholar 

  40. Sieber, P., Brugger, M., Kamber, B., Riniker, B., and Rittel, W. (1968) Menschliches calcitonin. IV. Die synthese von calcitonin M. Helv Chin. Acta 51, 2057–2061.

    CAS  Google Scholar 

  41. Nishiuchi, Y. and Sakakibara, S. (1982) Primary and secondary structures of conotoxin GI, a neurotoxic tridecapeptide from a marine snail. FEBS Lett. 148, 260–262.

    CAS  PubMed  Google Scholar 

  42. Gray, W. R., Rivier, J. E, Galyean, R., Cruz, L J, and Olivera, B. M. (1983) Conotoxin MI: disulfide bonding and conformational states. J. Biol. Chem. 258, 12,247–12,251.

    CAS  PubMed  Google Scholar 

  43. Nishiuchi, Y. and Sakakibara, S (1984) Synthesis of conotoxin MI and GII: structure-activity relationship of conotoxins, in Peptide Chemistry 1983 (Munekata, E., ed.), Protein Research Foundation, Osaka, Japan, pp. 191–196.

    Google Scholar 

  44. Gray, W. R., Luque, F. A., Galyean, R., Atherton, E., Sheppard, R. C, Stone, B. L., Reyes, A., Alford, J., McIntosh, M., Olivera, B. M., Cruz, L. J, and Rivier, J. (1984) Conotoxin GI: disulfide bridges, synthesis, and preparation of iodinated derivatives. Biochemistry 23, 2796–2802.

    CAS  PubMed  Google Scholar 

  45. Atherton, E., Sheppard, R. C, and Ward, P. (1985) Peptide synthesis. Part 7. Solid-phase synthesis of conotoxin GI. J. Chem. Soc, Perkin Trans I, 2065–2073.

    Google Scholar 

  46. Myers, R. A., Zafaralla, G. C, Gray, W. R., Abbott, J., Cruz, L. J., and Olivera, B M. (1991) α-Conotoxins, small peptide probes of nicotinic acetylcholine receptors. Biochemistry 30, 9370–9377.

    CAS  PubMed  Google Scholar 

  47. Zhang, R and Snyder, G H. (1991) Factors governing selective formation of specific disulfides in synthetic variants of α-conotoxin. Biochemistry 30, 11,343–11,348, and references cited therein.

    CAS  PubMed  Google Scholar 

  48. Albericio, F, Royo, M., Munson, M. C, Sole, N. A., Van Abel, R J, Alsina, J, García-Echeverría, C, Slomczyńska, U., Eritja, R., Pons, M., Giralt, E., and Barany, G. (1993) Strategies and tactics for the solid-phase synthesis of cystine-containing peptides, in Peptide Chemistry 1992 (Yanaihara, N, ed.), Escom, Leiden, The Netherlands, pp. 19–23.

    Google Scholar 

  49. Munson, M. C. and Barany, G. (1993) Synthesis of α-conotoxin SI, a bicyclic tridecapeptide amide with two disulfide bridges: illustration of novel protection schemes and oxidation strategies. J. Am. Chem. Soc. 115, 10,203–10,216.

    CAS  Google Scholar 

  50. Van Rietschoten, J., Granier, C, Rochat, H., Lissitzky, S., and Miranda, F. (1975) Synthesis of apamin, a neurotoxic peptide from bee venom. Eur. J. Biochem. 56, 35–40.

    PubMed  Google Scholar 

  51. Van Rietschoten, J., Pedroso Muller, E., and Granier, C. (1977) Cysteine protection in solid phase synthesis of apamin, in Peptides Proceedings of the Fifth American Peptide Symposium (Goodman, M. and Meienhofer, J, eds.), Wiley, New York, pp. 522–524.

    Google Scholar 

  52. Cosand, W. L. and Merrifield, R B. (1977) Concept of internal structural controls for evaluation of inactive synthetic peptide analogs: synthesis of [Orn13,14]apamin and its guanidination to an apamin derivative with full neurotoxic activity Proc. Natl. Acad. Sci. USA 74, 2771–2775.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Granier, C, Pedroso Muller, E., and Van Rietschoten, J (1978) Use of synthetic analogs for a study on the structure-activity relationship of apamin. Eur J. Biochem. 82, 293–299, and references cited therein

    CAS  PubMed  Google Scholar 

  54. Sandberg, B. E. B. and Ragnarsson, U. (1978) Solid phase synthesis of apamin, the principal neurotoxin in bee venom. Isolation and characterization of acetamid-omethyl apamin. Int. J. Peptide Protein Res. 11, 238–245.

    CAS  Google Scholar 

  55. Albericio, F., Granier, C, Labbé-Juillié, C, Seagar, M., Couraud, F., and Van Rietschoten, J. (1984). Solid phase synthesis and HPLC purification of the protected 1-12 sequence of apamin for rapid synthesis of apamin analogues differing in the C-terminal region. Tetrahedron 40, 4313–4326.

    CAS  Google Scholar 

  56. Koide, T., Otaka, A., Arai, H., Funakoshi, S., Fujii, N., and Yajima, H. (1990) Synthetic studies on cystine-containing peptides using regioselective disulfide bond forming reactions, in Peptide Chemistry 1989 (Yanaihara, N, ed.), Protein Research Foundation, Osaka, Japan, pp. 171–174.

    Google Scholar 

  57. Shih, H. (1993) New approaches to the synthesis of cystine peptides using N-iodosuccinimide in the construction of disulfide bridges. J. Org. Chem. 58, 3003–3008.

    CAS  Google Scholar 

  58. Kumagaye, S.-I, Kuroda, H., Nakajima, K., Watanabe, T. X., Kimura, T, Masaki, T., and Sakakibara, S. (1988) Synthesis and disulfide structure determination of porcine endothelin: an endothelium-denved vasoconstricting peptide. Int. J. Peptide Protein Res. 32, 519–526.

    CAS  Google Scholar 

  59. Immer, H., Eberle, I., Fischer, W, and Moser, E (1989) Solution-synthesis of endothelin, in Peptides 1988 · Proceedings of the Twentieth European Peptide Symposium (Jung, G. and Bayer, E., eds.), de Gruyter, Berlin, pp 94–96.

    Google Scholar 

  60. Morimoto, H., Fujii, N., Otaka, A., Kuramochi, K., and Yajima, H. (1989) Silver trifluoromethanesulphonate, as an Acm-deprotecting reagent and its application to the synthesis of endothelin and endothelin-like peptide, in Peptide Chemistry 1988 (Ueki, M., ed.), Protein Research Foundation, Osaka, Japan, pp. 211–214.

    Google Scholar 

  61. Tam, J. P., Liu, W., Zhang, J.-W, Galantino, M., and de Castiglione, R. (1991) D-Amino acid and alanine scans of endothelin: an approach to study refolding intermediates, in Peptides 1990: Proceedings of the Twenty-First European Peptide Symposium (Giralt, E. and Andreu, D., eds.), Escom, Leiden, The Netherlands, pp. 160–163.

    Google Scholar 

  62. Casaretto, R and Nyfeler, R. (1991) Isolation, structure and activity of a side product from the synthesis of human endothelin, in Peptides 1990: Proceedings of the Twenty-First European Peptide Symposium (Giralt, E and Andreu, D., eds), Escom, Leiden, The Netherlands, pp. 181–182.

    Google Scholar 

  63. Hunt, J. T., Lee, V. G., Liu, E. C. K., Moreland, S., McMullen, D., Webb, M. L., and Bolgar, M (1994) Control of peptide disulfide regioisomer formation by mixed cysteine-penicillamine bridges: application to endothelin-1. Int J Pept. Prot Res. 42, 249–258.

    Google Scholar 

  64. Ponsati, B, Giralt, E., and Andreu, D. (1990) Solid-phase approaches to regiospecific double disulfide formation. Application to a fragment of bovine pituitary peptide Tetrahedron 46, 8255–8266, and references cited therein.

    CAS  Google Scholar 

  65. Aimoto, S., Hojoh, H., and Takasaki, C. (1990) Studies on the disulfide bridges of sarafotoxins. Chemical synthesis of sarafotoxin S6B and its homologue with different disulfide bridges. Biochemistry Int. 21, 1051–1057.

    CAS  Google Scholar 

  66. Gariépy, J., Judd, A K., and Schoolnik, G. K. (1987) Importance of disulfide bridges in the structure and activity of Escherichia coli enterotoxin STlb. Proc. Natl. Acad. Sci. USA 84, 8907–8911.

    PubMed Central  PubMed  Google Scholar 

  67. Shimonishi, Y., Hidaka, Y., Koizumi, M., Hane, M., Aimoto, S., Takeda, T, Miwatani, T., and Takeda, Y. (1987) Mode of disulfide bond formation of a heatstable enterotoxin (STh) produced by a human strain of enterotoxigenic Escherichia coli. FEBS Lett. 215, 165–170.

    CAS  Google Scholar 

  68. Hidaka, Y., Kubota, H., Yoshimura, S., Ito, H, Takeda, Y., and Shimonishi, Y (1988) Disulfide linkages in a heat-stable enterotoxin (STp) produced by a porcine strain of enterotoxigenic Escherichia coli. Bull. Chem Soc. Jpn. 61, 1265–1271, and other contributions from this research team.

    CAS  Google Scholar 

  69. Cruz, L. J., Kupryszewski, G., LeCheminant, G. W., Gray, W. R., Olivera, B. M, and Rivier, J. (1989) μ-Conotoxin GIIIA, a peptide ligand for muscle sodium channels: chemical synthesis, radiolabeling, and receptor characterization. Biochemistry 28, 3437–3442

    CAS  PubMed  Google Scholar 

  70. Becker, S., Atherton, E., and Gordon, R. D. (1989) Synthesis and characterization of μ-conotoxin IIIa Eur J. Biochem 185, 79–84

    CAS  PubMed  Google Scholar 

  71. Hatanaka, Y., Yoshida, E., Nakayama, H., and Kanaoka, Y. (1990) Synthesis of μ-conotoxin GIIIA: a chemical probe for sodium channels Chem. Pharm. Bull. 38, 236–238.

    CAS  PubMed  Google Scholar 

  72. Kubo, S., Chino, N., Watanabe, T. X, Kimura, T., and Sakakibara, S. (1993) Solution synthesis of μ-conotoxin GIIIB: optimization of the oxidative folding reaction. Peptide Res. 6, 66–72.

    CAS  Google Scholar 

  73. Nishiuchi, Y., Kumagaye, K., Noda, Y., Watanabe, T. X., and Sakakibara, S. (1986) Synthesis and secondary-structure determination of ω-conotoxin GVIA: a 27-peptide with three intramolecular disulfide bonds. Biopolymers 25, S61–S68, and references cited therein.

    CAS  PubMed  Google Scholar 

  74. Rivier, J., Galyean, R., Gray, W. R., Azimi-Zonooz, A., McIntosh, J. M, Cruz, L. J., and Olivera, B. M. (1987) Neuronal calcium channel inhibitors Synthesis of ω-conotoxin GVIA and effects on 45Ca uptake by synaptosomes J Biol. Chem. 262, 1194–1198.

    CAS  PubMed  Google Scholar 

  75. Pennington, M. W., Festin, S. M., and Maccecchini, M. L. (1991) Comparison of folding procedures on synthetic ω-conotoxin, in Peptides 1990: Proceedings of the Twenty-First European Peptide Symposium (Giralt, E. and Andreu, D., eds.), Escom, Leiden, The Netherlands, pp. 164–166.

    Google Scholar 

  76. Sabo, T., Gilon, C, Shafferman, A., and Elhanaty, E. (1992) Structure-activity studies of ω-conotoxin: the importance of disulfide bridges for biological activity, in Peptides-Chemistry and Biology: Proceedings of the Twelfth American Peptide Symposium (Smith, J. A. and Rivier, J. E., eds.), Escom, Leiden, The Netherlands, pp. 159–160

    Google Scholar 

  77. Pennington, M. W., Festin, S. M., Maccecchini, M. L., and Kern, W. R (1992) Synthesis and characterization of a disulfide bond isomer of omega-conotoxin GVIA. Toxicon 30, 755–764

    CAS  PubMed  Google Scholar 

  78. Le-Nguyen, D., Nalis, D, and Castro, B. (1989) Solid phase synthesis of a trypsin inhibitor isolated from the Cucurbitaceae Ecballium elaterium. Int. J. Peptide Protein Res. 34, 492–497.

    Google Scholar 

  79. Kupryszewski, G., Ragnarsson, U., Rolka, K., and Wilusz, T. (1986) Solid-phase synthesis of trypsin inhibitor CMTI III from squash seeds (Cucurbita maxima). Int. J. Peptide Protein Res. 27, 245–250.

    CAS  Google Scholar 

  80. Fujii, N., Okamachi, A., Funakoshi, S, Kuroda, M, Hayashi, Y., Yajima, H., Fukada, J., Imura, H., Bessalle, R., and Fridkin, M. (1990) Synthesis and biological activities of rabbit corticostatin (rCS), in Peptides-Chemistry, Structure and Biology: Proceedings of the Eleventh American Peptide Symposium (Rivier, J. E. and Marshall, G. R., eds), Escom, Leiden, The Netherlands, pp. 241–243.

    Google Scholar 

  81. Tarn, J. P., Wu, C.-R, Liu, W, and Zhang, J.-W. (1991) Disulfide bond formation in peptides by dimethyl sulfoxide. Scope and applications. J. Am. Chem. Soc 113, 6657–6662, and references cited therein.

    Google Scholar 

  82. Chow, M.-S., Tran, D., Dobbs, C. H., Rao, V. S. V., Hsieh, M. M., Harwig, S. S. L., and Selsted, M. E. (1992) Fmoc solid phase peptide synthesis of defensins, in Abstracts of the Sixth Symposium of the Protein Society, p. 135.

    Google Scholar 

  83. Rao, A. G, Rood, T., Maddox, J., and Duvick, J (1992) Synthesis and characterization of defensin NP-1. Int. J. Peptide Protein Res. 40, 507–514.

    CAS  Google Scholar 

  84. Lambert, P., Kuroda, H., Chino, N., Watanabe, T. X., Kimura, T, and Sakakibara, S (1990) Solution synthesis of charybdotoxin (ChTX), a K+ channel blocker. Biochem. Biophys Res. Commun. 170, 684–690.

    CAS  PubMed  Google Scholar 

  85. Cotton, R., Dutta, A. S., Giles, M. B., and Hayward, C F. (1992) Solid phase synthesis of a number of venom toxins containing two to six cysteine residues, in Peptides-Chemistry and Biology. Proceedings of the Twelfth American Peptide Symposium (Smith, J. A. and Rivier, J E, eds.), Escom, Leiden, The Netherlands, pp. 639–640.

    Google Scholar 

  86. Vita, C, Bontems, F., Roumestand, C, Ménez, A., and Toma, F. (1993) Solid-phase synthesis, structural and functional characterisation of charybdotoxin and of two truncated analogues, in Peptides 1992: Proceedings of the Twenty-Second European Peptide Symposium (Schneider, C. H and Eberle, A. N., eds.), Escom, Leiden, The Netherlands, pp. 641–642

    Google Scholar 

  87. Maruyama, K, Nagata, K., Tanaka, M, Nagasawa, H., Isogai, A., Ishizaki, H, and Suzuki, A (1992) Synthesis of bombyxin-IV, an insulin superfamily peptide from the silkworm, Bombyx mori, by stepwise and selective formation of three disulfide bridges. J Protein Chem. 11, 1–12.

    CAS  PubMed  Google Scholar 

  88. Maruyama, K., Nagasawa, H., Isogai, A., Ishizaki, H., and Suzuki, A. (1992) Determination of disulfide bond arrangement in bombyxin-IV, an insulin super-family peptide from the silkworm, Bombyx mori, by combination of thermolysin digestion of natural peptide and selective synthesis of disulfide bond isomers J Protein Chem 11, 13–20.

    CAS  PubMed  Google Scholar 

  89. Nagata, K, Marayuma, K., Nagasawa, H, Urushibata, I, Isogai, A., Ishizaki, H, and Suzuki, A. (1992) Bombyxin-II and its disulfide bond isomers: synthesis and activity. Peptides 13, 653–662.

    CAS  PubMed  Google Scholar 

  90. Pennington, M. W, Kem, W. R, Norton, R S, and Dunn, B. M. (1990) Chemical synthesis of a neurotoxic polypeptide from the sea anemone Stichodactyla helianthus. Int. J. Peptide Protein Res. 36, 335–343.

    CAS  Google Scholar 

  91. Pennington, M. W., Kern, W. R., and Dunn, B. M. (1990). Synthesis and biological activity of six monosubstituted analogs of a sea anemone polypeptide neurotoxin. Peptide Res. 3, 228–232.

    CAS  Google Scholar 

  92. Sieber, P., Kamber, B., Hartmann, A, Johl, A., Riniker, B., and Rittel, W. (1974) Totalsynthese von humaninsulin unter gezielter bildung der disulfidbindungen Helv. Chem. Acta 57, 2617–2621

    CAS  Google Scholar 

  93. Sieber, P., Kamber, B., Hartmann, A., Jóhl, A, Riniker, B, and Rittel, W. (1977) Totalsynthese von humaninsulin IV. Beschreibung der endstufen. Helv. Chem Acta 60, 27–37, and preceding papers in this series.

    CAS  Google Scholar 

  94. Sieber, P., Eisler, K, Kamber, B., Riniker, B., Rittel, W, Märkí, F., and De Gasparo, M (1978) Synthesis and biological activity of two disulfide bond isomers of human insulin [A7-A11, A6-B7-cystine]-and [A6-A7, A11-B7-cystine]insulin (human). Hoppe-Seyler’s Z Physiol. Chem. 359, 113–123.

    CAS  PubMed  Google Scholar 

  95. Birr, C and Pipkorn, R. (1979) Fully active insulin by selective formation of the disulfide bridges between a synthetic A-chain and natural B-chain. Angew. Chem Int. Ed. Engl. 18, 536–538.

    CAS  PubMed  Google Scholar 

  96. Büllesbach, E. E. and Schwabe, C. (1991) Total synthesis of human relaxin and human relaxin derivatives by solid-phase peptide synthesis and site-directed chain combination. J. Biol. Chem. 266, 10,754–10,761.

    PubMed  Google Scholar 

  97. Wade, J. D., Vandlen, R. L., and Tregear, G. W. (1992) Continuous flow Fmoc-polyamide solid phase synthesis of human gene 1 relaxin, in Innovation and Perspectives in Solid Phase Synthesis: Peptides, Polypeptides and Oligonucleotides. 1992 (Epton, R., ed.), Intercept Ltd., Andover, England, pp. 485–487.

    Google Scholar 

  98. Tam, J. P., Marquardt, H., Rosberger, D. F., Wong, T. W., and Todaro, G. J. (1984) Synthesis of biologically active rat transforming growth factor I. Nature 309, 376–378.

    CAS  PubMed  Google Scholar 

  99. Heath, W. F. and Merrifield, R. B (1986) A synthetic approach to structure-function relationships in the murine epidermal growth-factor molecule. Proc. Natl. Acad. Sci. USA 83, 6367–6371.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Tam, J. P., Sheikh, M. A., Solomon, D. S, and Ossowski, L. (1986) Efficient synthesis of human type a transforming growth factor: its physical and biological characterization. Proc. Natl. Acad. Sci. USA 83, 8082–8086.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Tam, J. P. (1987) Synthesis of biologically active transforming growth factor alpha. Int. J. Peptide Protein Res. 29, 421–431.

    CAS  Google Scholar 

  102. Lin, Y.-Z, Caporaso, G, Chang, P.-Y., Ke, X.-H, and Tam, J P (1988) Synthesis of biological active tumor growth factor from the predicted DNA sequence of Shope fibroma virus Biochemistry 27, 5640–5645.

    CAS  PubMed  Google Scholar 

  103. Tam, J. P., Lin, Y.-Z, Liu, W., Wang, D.-X., Ke, X.-H, and Zhang, J.-W (1991) Mapping the receptor-recognition site of human transforming growth factor-α. Int. J. Peptide Protein Res. 38, 204–211

    CAS  Google Scholar 

  104. Tan, N. H. and Kaiser, E. T. (1976) Studies on the solid-phase synthesis of bovine pancreatic trypsin inhibitor (Kunitz) and the characterization of the synthetic material. J. Org. Chem 41, 2787–2793.

    CAS  PubMed  Google Scholar 

  105. Aimoto, S., Mizoguchi, N., Hojo, H., and Yoshimura, S. (1989) Development of a facile method for polypeptide synthesis. Synthesis of bovine pancreatic trypsin inhibitor (BPTI). Bull. Chem. Soc. Jpn. 62, 524–531.

    CAS  Google Scholar 

  106. Ferrer, M., Woodward, C, and Barany, G. (1992) Solid-phase synthesis of bovine pancreatic trypsin inhibitor (BPTI) and two analogues. Int. J. Peptide Protein Res. 40, 194–207.

    CAS  Google Scholar 

  107. Lin, Y-Z., Isaac, D. D., and Tam, J. P. (1990) Synthesis and properties of cholecystokinin-releasing peptide (monitor peptide), a 61-residue trypsin inhibitor. Int. J. Peptide Protein Res. 36, 433–439.

    CAS  Google Scholar 

  108. Chino, N., Kubo, S., Nishiuchi, Y., Kumagaye, S.-L, Yoshizawa-Kumagaye, K., Takai, M., Kimura, T., and Sakakibara, S. (1988) Synthesis of porcine C5a anaphylatoxin by the solution procedure and confirmation of the reported structure. Biochem. Biophys. Res. Commun. 161, 1285–1292

    Google Scholar 

  109. Kimura, T., Chino, N., Kumagaye, S.-L, Kuroda, H., Emura, J, and Sakakibara, S. (1990) Total synthesis of human angiogenin by the solution procedure, in Peptide Chemistry 1989 (Yanaihara, N., ed), Protein Research Foundation, Osaka, Japan, pp. 303–308

    Google Scholar 

  110. Nishio, H., Kumagaye, K. Y., Chen, Y-N., Kimura, T., and Sakakibara, S. (1994) Synthesis and disulfide structure determination of ψ-agatoxin IV, in Peptides-Chemistry, Structure and Biology: Proceedings of the Thirteenth American Peptide Symposium (Hodges, R. S. and Smith, J. A., eds), Escom, Leiden, The Netherlands, pp. 31–33.

    Google Scholar 

  111. Garsky, V. M., Lumma, P. K., Freidinger, R. M., Pitzenberger, S. M., Randall, W C, Veber, D. F., Gould, R J., and Friedman, P. A. (1989) Chemical synthesis of echistatin, a potent inhibitor of platelet aggregation from Echis carinatus · synthesis and biological activity of selected analogs. Proc. Natl. Acad. Sci. USA, 86, 4022–4026

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Nishio, H., Kumagaye, S., Kuroda, H., Chino, N., Emura, J., Kimura, T, and Sakakibara, S. (1992) Solution synthesis of Na+, K+-ATPase inhibitor-1 (SPAI-1). Peptide Res. 5, 227–244.

    CAS  Google Scholar 

  113. Tsunemi, M., Kato, H., Nishiuchi, Y, Kumagaye, S-I., and Sakakibara, S. (1992) Synthesis and structure-activity relationships of elafin, an elastase-specific inhibitor. Biochem. Biophys. Res. Commun. 185, 967–973.

    CAS  PubMed  Google Scholar 

  114. Gutte, B. and Merrifield, R. B. (1971) The synthesis of nbonuclease A. J. Biol. Chem. 246, 1922–1941.

    CAS  PubMed  Google Scholar 

  115. Yajima, H. and Fujii, N. (1981) Studies on peptides. 103. Chemical synthesis of a crystalline protein with the full enzymatic activity of ribonuclease A J. Am. Chem. Soc. 103, 5867–5871.

    CAS  Google Scholar 

  116. Bodanszky, M. and Stahl, G. L. (1974) The structure and synthesis of malformin A Proc. Natl. Acad. Sci. USA 71, 2791–2794.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Kao, P. N. and Karlin, A. (1986) Acetylcholine receptor binding site contains a disulfide cross-link between adjacent half-cystmyl residues. J. Biol. Chem. 261, 8085–8088.

    CAS  PubMed  Google Scholar 

  118. Marti, T., Ròsselet, S. J., Titani, K, and Walsh, K. A. (1987) Identification of disulfide-bridged substructures within human von Willebrand factor. Biochemistry 26, 8099–8109, and references cited therein

    CAS  PubMed  Google Scholar 

  119. Mosckovitz, R. and Gershon, J. M. (1988) Three possible disulfides in the acetylcholine receptor α-subunit. J. Biol. Chem. 263, 1017–1022

    CAS  PubMed  Google Scholar 

  120. Prorok, M. and Lawrence, D S. (1990) An affinity label of absolute peptidic origin. J. Am. Chem. Soc. 112, 8626–8627.

    CAS  Google Scholar 

  121. Sukumaran, D. K, Prorok, M., and Lawrence, D S (1991) A molecular constraint that generates a cis peptide bond. J. Am. Chem Soc. 113, 706–707, and references cited therein

    CAS  Google Scholar 

  122. Brady, S. F, Paleveda, Jr., W J., Arison, B. H, Saperstein, R, Brady, E. J, Raynor, K., Reisine, T., Veber, D F., and Freidinger, R M (1993) Aproaches to peptidomimetics which serve as surrogates for the cis amide bond novel disul-fide-constrained bicyclic hexapeptide analogs of somatostatin. Tetrahedron 49, 3449–3466.

    CAS  Google Scholar 

  123. Zhang, R. and Snyder, G H (1989) Dependence of formation of small disulfide loops in two-cysteine peptides on the number and types of intervening amino acids. J. Biol. Chem. 264, 18,472–18,479, and references cited therein

    CAS  PubMed  Google Scholar 

  124. Albericio, F., Hammer, R. P., García-Echevarría, C, Molins, M. A., Chang, J. L., Munson, M. C, Pons, M, Giralt, E, and Barany, G. (1991) Cychzation of disulfide-containing peptides in solid-phase synthesis. Int. J. Peptide Protein Res. 37, 402–413, and references cited therein.

    CAS  Google Scholar 

  125. Falcomer, C. M, Meinwald, Y. C, Choudhary, I., Talluri, S, Milburn, P. J., Clardy, J, and Scheraga, H. A. (1992) Chain reversals in model peptides: studies of cystine-containing cyclic peptides. 3 Conformational free energies of cyclization of tetrapeptides of sequence Ac-Cys-Pro-X-Cys-NHMe. J. Am. Chem. Soc 114, 4036–4062, and references cited therein.

    CAS  Google Scholar 

  126. Creighton, T. E. and Goldenberg, D. P. (1984) Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J. Mol. Biol. 179, 497–526.

    CAS  PubMed  Google Scholar 

  127. Altmann, K.-H. and Scheraga, H. A. (1990) Local structure in ribonuclease A. Effect of amino acid substitutions on the preferential formation of the native disulfide loop in synthetic peptides corresponding to residues Cys58-Cys72 of bovine pancreatic ribonuclease A. J. Am. Chem. Soc. 112, 4926–4931, and references cited therein.

    CAS  Google Scholar 

  128. Noszál, B., Guo, W, and Rabenstein, D. L. (1992) Characterization of the macroscopic and microscopic acid-base chemistry of the native disulfide and reduced dithiol forms of oxytocin, arginine-vasopressin, and related peptides. J. Org. Chem. 57, 2327–2334, and references cited therein.

    Google Scholar 

  129. Fiser, A., Cserzo, M, Tudos, E., and Simon, I. (1992) Different sequence environments of cysteines and half cystines in proteins. Application to predict disulfide forming residues FEBS Lett. 302, 117–120, and references cited therein.

    CAS  PubMed  Google Scholar 

  130. Mazur, S. and Jayalekshmy, P (1979) Chemistry of polymer-bound o-benzyne. Frequency of encounter between substituents on cross-linked polystyrenes. J Am Chem. Soc. 101, 677–683

    CAS  Google Scholar 

  131. Barany, G and Merrifield, R B. (1979) Solid-phase peptide synthesis, in The Peptides-Analysis, Synthesis, Biology, vol 2 (Gross, E. and Meienhofer, J., eds.), Academic, New York, pp. 1–284.

    Google Scholar 

  132. Mott, A. W., Slomczyńska, U., and Barany, G. (1986) Formation of sulfur-sulfur bonds during solid-phase peptide synthesis: application to the synthesis of oxytocin, in Forum Peptides Le Cap d’Agde 1984 (Castro, B and Martinez, J., eds.), Les Impressions Dohr, Nancy, France, pp. 321–324.

    Google Scholar 

  133. Tsuji, T., Nakagawa, R., Sugimoto, N., and Fukuhara, K.-I (1987) Characterization of disulfide bonds in recombinant proteins: reduced human interleukin 2 in inclusion bodies and its oxidative refolding. Biochemistry 26, 3129–3134, and references cited therein

    CAS  PubMed  Google Scholar 

  134. Sabatier, J.-M., Darbon, H., Fourquet, P., Rochat, H., and Van Rietschoten, J. (1987) Reduction and reoxidation of the neurotoxin II from the scorpion Androctonus australis Hector. Int. J. Peptide Protein Res. 30, 125–134.

    CAS  Google Scholar 

  135. Iwai, M., Kobayashi, M., Tamura, K., Ishii, Y., Yamada, H., and Niwa, M. (1989) Direct identification of disulfide bond linkages in human insulin-like growth factor I (IGF) by chemical synthesis. J. Biochem. 106, 949–951.

    CAS  PubMed  Google Scholar 

  136. Kataoka, H, Li, J. P., Lui, A S. T., Kramer, S. J., and Schooley, D. A. (1992) Complete structure of eclosion hormone of manduca sexta. Assignment of disulfide bond location. Int. J. Peptide Protein Res. 39, 29–35.

    CAS  Google Scholar 

  137. Bernatowicz, M. S., Matsueda, R., and Matsueda, G. R (1986) Preparation of Boc-[S-(3-nitro-2-pyridinesulfenyl)]-cysteme and its use for unsymmetrical disulfide bond formation. Int. J Peptide Protein Res. 28, 107–112

    CAS  Google Scholar 

  138. Romani, S., Moroder, L, Gohring, W., Scharf, R., Wunsch, E., Barde, Y A., and Thoenen, H. (1987). Synthesis of the trypsin fragment 10-25/75-88 of mouse nerve growth factor. Int. J. Peptide Protein Res. 29, 107–117

    CAS  Google Scholar 

  139. Wunsch, E., Moroder, L., Góhring-Romani, S, Musiol, H.-J., Gohring, W., and Bovermann, G. (1988) Synthesis of the bis-cystinyl-fragment 225-232/225′-232′ of the human IgGl hinge region. Int. J. Peptide Protein Res. 32, 368–383

    CAS  Google Scholar 

  140. Drijfhout, J. W., Perdijk, E. W., Weijer, W J, and Bloemhoff, W. (1988) Controlled peptide-protein conjugation by means of 3-nitro-2-pyridinesulfenyl protection-activation. Int. J Peptide Protein Res. 32, 161–166

    CAS  Google Scholar 

  141. Ruiz-Gayo, M., Albericio, F., Pons, M, Royo, M, Pedroso, E., and Giralt, E (1988) Uteroglobin-like peptide cavities I. Synthesis of antiparallel and parallel dimers of bis-cysteine peptides. Tetrahedron Lett 29, 3845–3848.

    CAS  Google Scholar 

  142. Ponsati, B., Giralt, E., and Andreu, D (1989) A synthetic strategy for simultaneous purification-conjugation of antigenic peptides. Anal. Biochem. 181, 389–395.

    CAS  PubMed  Google Scholar 

  143. Albericio, F, Andreu, D, Giralt, E, Navalpotro, C, Pedroso, E, Ponsati, B., and Ruiz-Gayo, M. (1989) Use of the Npys thiol protection in solid phase peptide synthesis. Application to direct peptide-protein conjugation through cysteine residues. Int. J. Peptide Protein Res. 34, 124–128.

    CAS  Google Scholar 

  144. Chaturvedi, S and Bahl, O. P. (1990) Synthesis of cystine peptides 21-25/70-73 and 35-39/56-59 of the β-subunit of human choriogonadotropin. Int. J. Peptide Protein Res. 35, 133–140.

    CAS  Google Scholar 

  145. Drijfhout, J. W. and Bloemhoff, W (1991) A new synthetic functionalized antigen carrier. Int. J. Peptide Protein Res. 37, 27–32

    CAS  Google Scholar 

  146. Tam, J. P. and Shen, Z.-Y (1992) Efficient approach to synthesis of two-chain asymmetric cysteine analogs of receptor-binding region of transforming growth factor-α. Int. J. Peptide Protein Res 39, 464–471.

    CAS  Google Scholar 

  147. Fischer, P. M. and Howden, M. E. H. (1993) Application of anti-peptide antibodies to the assignment of the inter-chain disulphide bond in tetanus toxin. Int J Peptide Protein Res. 41, 415–419, and references cited therein

    CAS  Google Scholar 

  148. Simmonds, R. G., Tupper, D. E., and Harris, J. R. (1994) Synthesis of disul-fide-bridged fragments of ω-conotoxins GVIA and MVIIA. Use of Npys as a protecting/activating group for cysteine in Fmoc syntheses. Int J Peptide Protein Res. 43, 363–366.

    CAS  Google Scholar 

  149. Ruiz-Gayo, M,, Royo, M., Fernández, I., Albericio, F, Giralt, E, and Pons, M. (1993) Unequivocal synthesis and characterization of a parallel and an antiparallel bis-cystine peptide. J. Org. Chem 58, 6319–6328

    CAS  Google Scholar 

  150. Kullmann, W. and Gutte, B. (1978) Synthesis of an open-chain asymmetrical cystine peptide corresponding to the sequence A18,21-B19,26 of bovine insulin by solid phase fragment condensation. Int. J Peptide Protein Res. 12, 17–26, and references cited therein.

    CAS  Google Scholar 

  151. Büllesbach, E. E and Schwabe, C. (1992) Sequential synthesis of an unsymmetrical two-chain disulfide peptide on solid-phase Tetrahedron Lett 33, 5881–5884, and references cited therein.

    Google Scholar 

  152. Photaki, I. (1976) The role of sulfur in amino acid protective group chemistry, in Topics in Sulfur Chemistry, vol. 1 (Senning, A, ed.), Georg Thieme, Stuttgart, pp. 111–183.

    Google Scholar 

  153. Hiskey, R. G. (1981) Sulfhydryl group protection in peptide synthesis, in The Peptides-Analysis, Synthesis, Biology, vol. 3 (Gross, E. and Meienhofer, J., eds.), Academic, New York, pp. 137–167.

    Google Scholar 

  154. König, W and Geiger, R. (1981) Selective formation of the disulfide bond in peptide synthesis, in Perspectives in Peptide Chemistry (Eberle, A, Geiger, R., and Wieland, T., eds.), S. Karger, Basel, pp. 31–44.

    Google Scholar 

  155. Yajima, H., Fujii, N., Funakoshi, S., Watanabe, T, Murayama, E, and Otaka, A. (1988) New strategy for the chemical synthesis of proteins. Tetrahedron 44, 805–819.

    CAS  Google Scholar 

  156. Cavelier, F., Daunis, J., and Jacquier, R. (1989) Les réactions régiosélectives de formation de ponts disulfure en synthèse de peptides contenant des cystines. Bull. Soc. Chim. Fr., 788–798.

    Google Scholar 

  157. Cavelier, F., Daunis, J., and Jacquier, R. (1990) Etude bibliographique et critique de la protection de la fonction thiol en synthese peptidique (mise au point). Bull. Soc. Chim. Fr., 210–225.

    Google Scholar 

  158. Bullesbach, E. E. (1992) Site-directed disulfide formation in peptide synthesis Kontakte (Darmstadt) 1, 21–29.

    Google Scholar 

  159. Oae, S (ed.) (1977) Organic Chemistry of Sulfur, Plenum, New York, especially Chapter 4, Thiols, by Ohno, A. and Oae, S, pp. 119–187, and Chapter 7, Disul-fides and polysulfides, by Field, L, pp. 303-382.

    Google Scholar 

  160. Oae, S. (1991) Organic Sulfur Chemistry: Structure and Mechanism. CRC, Boca Raton, FL.

    Google Scholar 

  161. Wùnsch, E. (ed.) (1974) Synthese von Peptiden, in Houben-Weyl’s Methoden der Organischen Chemie, vol. 15, 4th ed., parts 1 and 2 (Müller, E., ed.), Georg Thieme, Stuttgart.

    Google Scholar 

  162. Bodanszky, M. (1984) Principles of Peptide Synthesis. Springer-Verlag, Berlin.

    Google Scholar 

  163. Bodanszky, M. and Bodanszky, A. (1984) The Practice of Peptide Synthesis. Springer-Verlag, Berlin.

    Google Scholar 

  164. Stewart, J. M. and Young, J. D. (1984) Solid Phase Peptide Synthesis, 2nd ed., Pierce Chemical Co, Rockford, IL.

    Google Scholar 

  165. Atherton, E. and Sheppard, R. C (1989) Solid Phase Peptide Synthesis · A Practical Approach. IRL, Oxford.

    Google Scholar 

  166. Fields, G. B., Tian, Z., and Barany, G. (1992) Principles and practice of solid-phase peptide synthesis, in Synthetic Peptides: A User’s Guide (Grant, G A, ed.), W. H. Freeman, New York, pp. 77–183.

    Google Scholar 

  167. Fotouhi, N., Galakatos, N G., and Kemp, D. S. (1989) Peptide synthesis by prior thiol capture. 6. Rates of the disulfide bond forming capture reaction and demonstration of the overall strategy by synthesis of the C-terminal 29-peptide sequence of BPTI. J. Org. Chem 54, 2803–2817, and previous contributions from this research team.

    CAS  Google Scholar 

  168. du Vigneaud, V, Audrieth, L. F, and Loring, H S. (1930) The reduction of cystine in liquid ammonia by metallic sodium. J. Am. Chem. Soc. 52, 4500–4504.

    Google Scholar 

  169. Erickson, B. W. and Merrifield, R. B. (1973) Acid stability of several benzylic protecting groups used in solid-phase peptide synthesis. Rearrangement of o-benzyltyrosine to 3-benzyltyrosine. J Am. Chem. Soc. 95, 3750–3756.

    CAS  PubMed  Google Scholar 

  170. Heath, W. F, Tarn, J. P., and Merrifield, R. B. (1986) Improved deprotection of cysteine-containing peptides in HF. Int. J. Peptide Protein Res 28, 498–507, and references cited therein.

    CAS  Google Scholar 

  171. Akabori, S., Sakakibara, S., Shimonishi, Y., and Nobuhara, Y. (1964) A new method for the protection of the sulfhydryl group during peptide synthesis. Bull Chem Soc. Jpn. 37, 433–434

    CAS  Google Scholar 

  172. Nishimura, O., Kitada, C, and Fujino, M (1978) A new method for removing the S-p-methoxybenzyl and S-t-butyI groups of cysteine residues with mercuric trifluoroacetate. Chem. Pharm. Bull. 26, 1576–1585.

    CAS  Google Scholar 

  173. Platen, M. and Steckhan, E. (1984) Oxidative deblocking of the 4-methoxybenzyl thioether protecting group: application to the directed synthesis of poly-cystinyl peptides. Liebigs Ann. Chem., 1563–1576.

    Google Scholar 

  174. Fujii, N., Otaka, A, Watanabe, T, Okamachi, A., Tamamura, H, Yajima, H, Inagaki, Y., Nomizu, M., and Asano, K (1989) Silver trifluoromethanesulphonate as an S-deprotecting reagent for the synthesis of cystine peptides. J. Chem. Soc, Chem. Comm., 283–284.

    Google Scholar 

  175. Sakakibara, S, Shimonishi, Y, Kishida, Y, Okada, M, and Sugihara, H (1967) Use of anhydrous hydrogen fluoride in peptide synthesis. I. Behavior of various protective groups in anhydrous hydrogen fluoride. Bull. Chem Soc Jpn 40, 2164–2167

    CAS  PubMed  Google Scholar 

  176. Pastuszak, J J and Chimiak, A. (1981) tert-Butyl group as thiol protection in peptide synthesis. J. Org. Chem. 46, 1868–1873, and references cited therein.

    CAS  Google Scholar 

  177. Atherton, E., Pinori, M., and Sheppard, R. C. (1985) Peptide synthesis. Part 6 Protection of the sulphydryl group of cysteine in solid-phase synthesis using Nα-fluorenylmethoxycarbonylamino acids. Linear oxytocin derivatives. J Chem Soc, Perkin Trans 1, 2057–2064

    Google Scholar 

  178. Ploux, O., Chassaing, G., and Marquet, A (1987) Cyclization of peptides on a solid support Application to cyclic analogs of substance P Int J. Peptide Protein Res. 29, 162–169.

    CAS  Google Scholar 

  179. McCurdy, S N (1989) The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis Peptide Res. 2, 147–152

    CAS  Google Scholar 

  180. Kamber, B and Rittel, W (1968) Eine neue, einfache methode zur synthese von cystinpeptiden. Helv. Chim. Acta 51, 2061–2064

    CAS  PubMed  Google Scholar 

  181. Photaki, I., Taylor-Papadimitriou, J., Sakarellos, C, Mazarakis, P., and Zervas, L (1970) On cysteine and cystine peptides. Part V. S-tntyl-and S-diphenylmethyl-cysteine and-cysteine peptides. J Chem. Soc. (C), 2683–2689, and other papers from this research team.

    Google Scholar 

  182. Kamber, B., Hartmann, A., Eisler, K, Riniker, B., Rink, H., Sieber, P, and Rittel, W (1980) The synthesis of cystine peptides by iodine oxidation of S-tntyl-cysteine and S-acetamidomethyl-cysteine peptides. Helv. Chim. Acta 63, 899–915, and references cited therein.

    CAS  Google Scholar 

  183. Fujii, N., Otaka, A., Funakoshi, S., Bessho, K, Watanabe, T., Akaji, K., and Yajima, H. (1987) Studies on peptides. CLI. Syntheses of cystine-peptides by oxidation of S-protected cysteine-peptides with thallium (III) trifluoroacetate Chem Pharm. Bull. 35, 2339–2347, and references cited therein

    CAS  PubMed  Google Scholar 

  184. Frankel, A. D., Biancalana, S., and Hudson, D (1989) Activity of synthetic peptides from the Tat protein of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 86, 7397–7401.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Munson, M. C, García-Echeverría, C, Albericio, F., and Barany, G. (1992) S-2,4,6-Trimethoxybenzyl (Tmob). a novel cysteine protecting group for the Nα-9-fluorenylmethyloxycarbonyl (Fmoc) strategy of peptide synthesis. J. Org. Chem. 57, 3013–3018, and references cited therein.

    CAS  Google Scholar 

  186. Munson, M. C, García-Echeverría, C, Albericio, F., and Barany, G. (1992) Novel cysteine protecting groups for the Nα-9-fluorenylmethyloxycarbonyl (Fmoc) strategy of peptide synthesis, in Peptides-Chemistry and Biology. Proceedings of the Twelfth American Peptide Symposium (Smith, J. A and Rivier, J. E, eds.), Escom, Leiden, The Netherlands, pp. 605–606.

    Google Scholar 

  187. Veber, D., Milkowski, J D, Varga, S L, Denkewalter, R G, and Hirschmann, R. (1972) Acetamidomethyl A novel thiol protecting group for cysteine J Am Chem.Soc. 94, 5456–5461.

    CAS  PubMed  Google Scholar 

  188. Kamber, B. (1971) Cystinpeptide aus (S-acetamidomethyl-cystein)-peptiden durch oxydation mit jod-die synthese von cyclo-L-cystin. Helv. Chim. Acta 54, 927–930.

    CAS  PubMed  Google Scholar 

  189. Liu, W., Shiue, G H, and Tarn, J P. (1989) A novel strategy for the deprotection of S-acetamidomethyl containing peptides: an approach to the efficient synthesis of endothelin, in Peptides-Chemistry, Structure and Biology: Proceedings of the Eleventh American Peptide Symposium (Rivier, J. E. and Marshall, G R, eds.), Escom, Leiden, The Netherlands, pp. 271–272.

    Google Scholar 

  190. Kiso, Y., Yoshida, M., Kimura, T., Fujiwara, Y, and Shikomura, M. (1989) A new thiol protecting trimethylacetamidomethyl group. Synthesis of a new porcine brain natriuretic peptide using the S-trimethylacetamidomethyl-cysteine. Tetrahedron Lett 30, 1979–1982.

    CAS  Google Scholar 

  191. Greiner, G. and Hermann, P. (1991) Application of penicillin amidohydrolase (PAH) for sulphur and amino deprotection in peptide synthesis, in Peptides 1990 · Proceedings of the Twenty-First European Peptide Symposium (Giralt, E. and Andreu, D., eds.), Escom, Leiden, The Netherlands, pp. 277–278.

    Google Scholar 

  192. Hermann, P. and Schillings, T. (1993) Enzymatic manipulation of protecting groups, in Peptides 1992: Proceedings of the Twenty-Second European Peptide Symposium (Schneider, C. H. and Eberle, A. N., eds.), Escom, Leiden, The Netherlands, pp. 411–412, and references cited therein.

    Google Scholar 

  193. Royo, M., Alsina, J., Giralt, E., Slomczyńska, U., and Albericio, F (1994). S-Phenylacetamidomethyl (Phacm). A versatile cysteine protecting group for Boc and Fmoc solid-phase synthesis strategies, in Peptides-Chemistry, Structure and Biology: Proceedings of the Thirteenth American Peptide Symposium (Hodges, R. S. and Smith, J. A., eds.), Escom, Leiden, The Netherlands, pp. 116–118.

    Google Scholar 

  194. Bodanszky, M and Bednarek, M. A (1982) Derivatives of S-9-fluorenyl-methyl-L-cysteine Int. J. Peptide Protein Res. 20, 434–437.

    CAS  Google Scholar 

  195. Ruiz-Gayo, M., Albericio, F., Pedroso, E., and Giralt, E. (1986) (S)-9-Fluorenyl-methyl-L-cysteine, a useful HF-stable derivative for peptide synthesis. J. Chem. Soc, Chem. Commun., 1501–1502.

    Google Scholar 

  196. Albericio, F., Nicolás, E., Rizo, J, Ruiz-Gayo, ML, Pedroso, E., and Giralt, E. (1990) Convenient syntheses of fluorenylmethyl-based side chain derivatives of glutamic and aspartic acids, lysine, and cysteine. Synthesis, 119–122.

    Google Scholar 

  197. Royo, M., García-Echeverría, C, Giralt, E., Eritja, R., and Albericio, F. (1992) S-2-(2,4-dinitrophenyl)ethyl-L-cysteine: a new derivative for solid-phase peptide synthesis Tetrahedron Lett 33, 2391–2394.

    CAS  Google Scholar 

  198. Weber, U. and Hartter, P. (1970) S-Alkylmercapto-gruppen zum schutz der SH-funktion des cysteins, I: synthese und stabilitat einiger S-(alkylmerkapto)cysteine Hoppe-Seyler’s Z Physiol. Chem 351, 1384–1388

    CAS  PubMed  Google Scholar 

  199. Wunsch, E. and Spangenberg, R (1971) Eine neue S-schutzgruppe fur cystein, in Peptides 1969 (Scoffone, E., ed.), North-Holland Publ., Amsterdam, pp. 30–34

    Google Scholar 

  200. Eritja, R., Ziehler-Martin, J P, Walker, P. A., Lee, T D, Legesse, K, Albericio, F, and Kaplan, B E. (1987) On the use of S-t-butylsulphenyl group for protection of cysteine in solid-phase peptide synthesis using Fmoc-amino acids Tetrahedron 43, 2675–2680

    CAS  Google Scholar 

  201. Hemmasi, B., Zeng, W, Waidelich, D, and Bayer E (1993) Reaction of HF with peptides containing Cys(StBu) in the presence of different scavengers, in Peptides 1992: Proceedings of the Twenty-Second European Peptide Symposium (Schneider, C. H. and Eberle, A. N., eds), Escom, Leiden, The Netherlands, pp. 202–204, and references cited therein.

    Google Scholar 

  202. Matsueda, R., Kimura, T, Kaiser, E. T, and Matsueda, G. R (1981) 3-Nitro-2-pyridinesulfenyl group for protection and activation of the thiol function of cysteine. Chem. Lett. 6, 737–740.

    Google Scholar 

  203. Ridge, R. J, Matsueda, G. R., Haber, E, and Matsueda, R. (1982) Sulfur protection with the 3-nitro-2-pyridinesulfenyl group in solid-phase peptide synthesis Synthesis of Iysine8-vasopressin Int. J. Peptide Protein Res. 19, 490–498.

    CAS  Google Scholar 

  204. Matsueda, R., Higashida, S., Albericio, F, and Andreu, D (1992) Compatibility of the S-(3-nitro-2-pyndinesulfenyl) protecting group with DCC/HOBt coupling chemistry. Peptide Res. 5, 262–263, and references cited therein.

    CAS  Google Scholar 

  205. Kamber, B. (1973) Die gezielte synthese offenkettiger asymmetrischer cystinpeptide mittels thiol-induzierter fragmentierung von sulfenylthio-carbonaten. Insulinfragmente mit intakter disulfidbrucke A20-B19 Helv. Chim. Acta 56, 1370–1381.

    CAS  PubMed  Google Scholar 

  206. Hiskey, R. G, Muthukumaraswamy, N., and Vunnam, R. R. (1975) Sulfur-containing polypeptides XVII. The S-carbomethoxysulfenyl derivative as a protective group for cysteine. J. Org. Chem. 40, 950–953

    CAS  PubMed  Google Scholar 

  207. Schroll, A. L. and Barany, G. (1989) A new protecting group for the sulfhydryl function of cysteine J Org. Chem. 54, 244–247, and references cited therein

    CAS  Google Scholar 

  208. Atherton, E., Hardy, P. M., Harris, D. E, and Matthews, B H. (1991) Racemization of C-termmal cysteine during peptide assembly, in Peptides 1990. Proceedings of the Twenty-First European Peptide Symposium (Giralt, E. and Andreu, D., eds.), Escom, Leiden, The Netherlands, pp. 243–244.

    Google Scholar 

  209. Ueki, M. and Shinozaki, K. (1983). Phosphinyl and phosphinothioyl atnino acids and peptides. VII. The use of the dimethylphosphinothioyl group as a thio protecting group of cysteine. Bull Chem. Soc. Jpn. 56, 1187–1191.

    CAS  Google Scholar 

  210. Galakatos, N G. and Kemp, D. S. (1985) New S-protection from known N-protection: thio esters of N-urethanyl-N-methyl-γ-aminobutyric acid as a class of protective groups for thiols in peptide synthesis. J. Org. Chem. 50, 1302–1304, and references cited therein.

    CAS  Google Scholar 

  211. Otaka, A., Morimoto, H., Fujii, N., Koide, T., Funakoshi, S., and Yajima, H. (1989) S-Benzyloxymethylcysteine, its properties and application in the synthesis of porcine brain natriuretic peptide (pBNP). Chem. Pharm. Bull. 37, 526–528, and references cited therein.

    CAS  Google Scholar 

  212. Blake, J., Woodworth, B. A., Litzi-Davis, L., and Cosand, W. L. (1992) Ethylcarbamoyl protection for cysteine in the preparation of peptide-conjugate immunogens. Int. J. Peptide Protein Res. 40, 62–65, and references cited therein.

    CAS  Google Scholar 

  213. Hallinan, E. A. (1991) Formation of a dehydroalanyl residue from S-benzylcys-teine upon HF cleavage of a [Sar1, Cys8]-angiotensin II peptide resin Int J Peptide Protein Res. 38, 601–602.

    CAS  Google Scholar 

  214. Echner, H and Voelter, W. (1992) 9-Phenylxanthen-9-yl-(Pixyl): a new thiol protecting group and its use in solid phase peptide chemistry, in Innovation and Perspectives in Solid Phase Synthesis: Peptides, Polypeptides and Oligonucleotides. 1992 (Epton, R., ed.), Intercept Ltd., Andover, England, pp. 371–375.

    Google Scholar 

  215. King, D S., Fields, C. G., and Fields, G. B. (1990) A cleavage method which minimizes side reactions following Fmoc solid phase peptide synthesis. Int. J. Peptide Protein Res. 36, 255–266.

    CAS  Google Scholar 

  216. Albericio, F., Kneib-Cordonier, N., Biancalana, S., Gera, L., Masada, R. I., Hudson, D, and Barany, G. (1990) Preparation and application of the 5-(4-(9-fluorenyl-methyloxycarbonyl) aminornethyl-3,5-dimethoxyphenoxy)valeric acid (PAL) handle for the solid-phase synthesis of C-terminal peptide amides under mild conditions. J. Org. Chem. 55, 3730–3743.

    CAS  Google Scholar 

  217. Pearson, D. A., Blanchette, M., Baker, M. L., and Guindon, C. A. (1989) Trialkylsilanes as scavengers for the trifluoroacetic acid deblocking of protecting groups in peptide synthesis. Tetrahedron Lett. 30, 2739–2742.

    CAS  Google Scholar 

  218. Solé, N. A. and Barany, G. (1992) Optimization of solid-phase synthesis of [Ala8]-dynorphin A. J. Org. Chem. 57, 5399–5403.

    Google Scholar 

  219. Brady, S., Paleveda, W. J., and Nutt, R. (1989) Studies of acetamidomethyl as cysteine protection: application in synthesis of ANF analogs, in Peptides-Chem-istry and Biology · Proceedings of the Tenth American Peptide Symposium (Marshall, G. R., ed.), Escom, Leiden, The Netherlands, pp. 192–194.

    Google Scholar 

  220. Mendelson, W. L., Tickner, A. M., Holmes, M. M, and Lantos, I. (1990) Efficient solution phase synthesis of [l-(β-mercapto-β,β-cyclopentamethylenepropionic acid)-2-(O-ethyl-D-tyrosine)-4-valme-9-desglycine]arginine vasopressm. Int J Peptide Protein Res. 35, 249–257.

    CAS  Google Scholar 

  221. Lamthanh, H., Roumestand, C, Deprun, C, and Ménez, A (1993) Side reaction during the deprotection of (S-acetamidomethyl)cysteine in a peptide with a high serine and threonine content. Int. J Peptide Protein Res. 41, 85–95, and references cited therein.

    CAS  Google Scholar 

  222. Inukai, N., Nakano, K, and Murakami, M. (1967) The peptide synthesis. I. Use of the S-ethylmercapto group for the protection of the thiol function of cy steine Bull Chem. Soc. Jpn. 40, 2913–2918.

    CAS  Google Scholar 

  223. Inukai, N., Nakano, K., and Murakami, M. (1968) The peptide synthesis. II. Use of the phenol resin for the peptide synthesis. Bull. Chem. Soc. Jpn. 41, 182–186

    CAS  PubMed  Google Scholar 

  224. Nokihara, K. and Berndt, H. (1978) Studies on sulfur-containing peptides: tert-butyloxycarbonylsulfenyl and benzyloxycarbonylsulfenyl derivatives as protecting groups for cysteine. J. Org. Chem. 43, 4893–4895

    CAS  Google Scholar 

  225. Glass, J. D. (1987) Enzymatic manipulation of protecting groups in peptide synthesis, in The Peptides-Analysis, Synthesis, Biology, vol 9 (Udenfriend, S and Meienhofer, J., eds.), Academic, San Diego, pp. 167–184

    Google Scholar 

  226. Jaenicke, R. and Rudolph, R. (1989) Folding proteins, in Protein Structure: A Practical Approach (Creighton, T. E., ed.), IRL, Oxford, pp. 191–223, and references cited therein

    Google Scholar 

  227. Narhi, L O., Arakawa, T., McGinley, M. D, Rohde, M F, and Westcott, K. R (1992) Circular dichroism of reduced and oxidized recombinant human epidermal growth factor. Int. J. Peptide Protein Res. 39, 182–187

    CAS  Google Scholar 

  228. Singh, R and Whitesides, G. M. (1991) A reagent for reduction of disulfide bonds in proteins that reduces disulfide bonds faster than does dithiothreitol. J. Org. Chem. 56, 2332–2337

    CAS  Google Scholar 

  229. Ranganathan, S. and Jayaraman, N. (1991) Highly efficient propane-1,3-dithiol mediated thiol-disulphide interchange, a facile and clean methodology for S-S reduction in peptides. J. Chem. Soc, Chem. Commun, 934–936.

    Google Scholar 

  230. Lamoureux, G. V. and Whitesides, G M. (1993) Synthesis of dithiols as reducing agents for disulfides in neutral aqueous solution and comparison of reduction potentials J. Org. Chem 58, 633–641

    CAS  Google Scholar 

  231. Rüegg, U. T. and Rudinger, J. (1977) Reductive cleavage of cystine disulfides with tributylphosphine Methods Enzymol. 47, 111–116

    PubMed  Google Scholar 

  232. Burns, J. A., Butler, J. C, Moran, J., and Whitesides, G. M. (1991) Selective reduction of disulfides by tris(2-carboxyethyl)phosphine J Org. Chem 56, 2648–2650.

    CAS  Google Scholar 

  233. Weldon, M. A. and Packman, L C. (1992) Disulphide bridge formation in synthetic peptides—rapid monitoring of the process by capillary electrophoresis, in Innovation and Perspectives in Solid Phase Synthesis. Peptides, Polypeptides and Oligonucleotides 1992 (Epton, R, ed.), Intercept Ltd., Andover, England, pp 489–493.

    Google Scholar 

  234. Chance, R. E., Hoffmann, J. A., Kroeff, E P., Johnson, M. G., Schirmer, E. W, and Bromer, W. W. (1981) The production of human insulin using recombinant DNA technology and a new chain combination procedure, in Peptides-Synthesis, Structure, Function. Proceedings of the Seventh American Peptide Symposium (Rich, D. H. and Gross, E., eds.), Pierce Chemical Co, Rockford, IL, pp 721–728.

    Google Scholar 

  235. Tarbell, D. S. (1961) The mechanism of oxidation of thiols to disulfides, in Organic Sulfur Compounds, vol. 1 (Kharasch, N., ed.), Pergamon, Oxford, pp. 97–102, and references cited therein.

    Google Scholar 

  236. Jocelyn, P. C. (1972) Biochemistry of the SH Group. Academic, London, especially Chapter 4, Oxidation of thiols, pp. 94–115, and references cited therein.

    Google Scholar 

  237. Adamson, J. G. and Lajoie, G. A. (1994) Guanidine hydrochloride assists intramolecular disulfide bond formation in cysteine peptides, in Peptides-Chemistry, Structure and Biology: Proceedings of the Thirteenth American Peptide Symposium (Hodges, R. S. and Smith, J. A., eds.), Escom, Leiden, The Netherlands, pp. 44,45.

    Google Scholar 

  238. Ellman, G. L. (1959) Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82, 70–77

    CAS  PubMed  Google Scholar 

  239. Grassetti, D. R. and Murray, J. F., Jr. (1967) Determination of sulfhydryl groups with 2,2′-or 4,4′-dithiodipyridine. Arch. Biochem. Biophys. 119, 41–49.

    CAS  PubMed  Google Scholar 

  240. Riddles, P. W., Blakeley, R. L., and Zerner, B. (1979) Ellman’s reagent: 5,5′-Dithiobis(2-nitrobenzoic acid)—a reexamination. Anal. Biochem. 94, 75–81.

    CAS  PubMed  Google Scholar 

  241. Ashworth, M. R. F. (1976) The Determination of Sulphur-Containing Groups, vol. 2, Analytical Methods for Thiol Groups. Academic, London.

    Google Scholar 

  242. Zonta, A. and Adermann, K. (1993) Disulfide bridge formation in synthetic urodilatin (CDD/ANP-95-126), in Peptides 1992 Proceedings of the Twenty-Second European Peptide Symposium (Schneider, C H. and Eberle, A. N, eds), Escom, Leiden, The Netherlands, pp. 397–398.

    Google Scholar 

  243. Wallace, T. J. and Mahon, J. J. (1965) Reactions of thiols with sulfoxides III. Catalysis by acids and bases. J. Org. Chem. 30, 1502–1506, and references cited therein

    CAS  Google Scholar 

  244. Fujii, N., Otaka, A., Okamachi, A., Watanabe, T., Arai, H., Tamamura, H., Funakoshi, S., and Yajima, H. (1989) Synthetic studies on cystine-containing peptides, in Peptides 1988: Proceedings of the Twentieth European Peptide Symposium (Jung, G. and Bayer, E., eds.), Walter de Gruyter & Co., Berlin, pp. 58–60.

    Google Scholar 

  245. Le-Nguyen, D. and Rivier, J. (1986) Use of carboethoxysulfenyl chloride for disulfide bond formation Int. J. Peptide Protein Res. 27, 285–292.

    Google Scholar 

  246. Hantgan, R R, Hammes, G. G., and Scheraga, H. A. (1974) Pathways of folding of reduced bovine pancreatic ribonuclease. Biochemistry 13, 3421–3431.

    CAS  PubMed  Google Scholar 

  247. Karim Ahmed, A., Schaffer, S. W., and Wetlaufer, D. B. (1975) Nonenzymic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers. J. Biol. Chem. 250, 8477–8482

    Google Scholar 

  248. Rothwarf, D. M. and Scheraga, H. A. (1993) Regeneration of bovine pancreatic ribonuclease A 1. Steady-state distribution. Biochemistry 32, 2671–2679, and three successive articles in same journal.

    CAS  PubMed  Google Scholar 

  249. Pigiet, V. P. and Schuster, B. J. (1986) Thioredoxin-catalyzed refolding of disulfide-containing proteins. Proc. Natl. Acad. Sci. USA 83, 7643–7647.

    CAS  PubMed Central  PubMed  Google Scholar 

  250. Hillson, D. A., Lambert, N., and Freedman, R. B. (1984) Formation and lsomerization of disulfide bonds in proteins: protein disulfide-isomerase. Methods Enzymol. 107, 281–294.

    CAS  PubMed  Google Scholar 

  251. Edman, J. C, Ellis, L., Blacher, R. W., Roth, R A., and Rutter, W J. (1985) Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317, 267–270, and references cited therein.

    CAS  PubMed  Google Scholar 

  252. Lyles, M. M. and Gilbert, H F. (1991) Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer. Biochemistry 30, 613–619, and references cited therein.

    CAS  PubMed  Google Scholar 

  253. Bondi, E., Fridkin, M., and Patchornik, A (1968) The use of polymeric carriers in the synthesis of cyclic peptides containing S-S bonds Isr. J. Chem. 6, 22p.

    Google Scholar 

  254. Buchta, R., Bondi, E, and Fridkin, M. (1986) Peptides related to the calcium binding domains II and III of calmodulin. Synthesis and calmodulin-hke features Int. J. Peptide Protein Res. 28, 289–297.

    CAS  Google Scholar 

  255. Wenschuh, E., Heydenreich, M, Runge, R, and Fischer, S. (1989) CCl4 als mildes oxidans in der schwefelchemie: oxidation von thiolen zu disulfiden Sulfur Lett. 8, 251–260.

    CAS  Google Scholar 

  256. Munson, M C, Lebl, M., Slaninová, J., and Barany, G. (1993) Solid-phase synthesis and biological activity of the parallel dimer of deamino-oxytocin. Peptide Res. 6, 155–159

    CAS  Google Scholar 

  257. Ruiz-Gayo, M, Albencio, F, Royo, M, García-Echevarría, C, Pedroso, E, Pons, M., and Giralt, E. (1989) A convenient procedure for synthesis of cystine peptides via iodine oxidation of S-acetamidomethyl-cysteine peptides An Quim. 85C, 116–118.

    Google Scholar 

  258. Van Vliet, A., Smulders, R. H. P. H, Rietman, B. H, and Tesser, G I (1992) Protected peptide intermediates using a trityl linker on a solid support, in Innovation and Perspectives in Solid Phase Synthesis: Peptides, Polypeptides and Oligonucleotides. 1992 (Epton, R., ed.), Intercept, Andover, England, pp 475–477.

    Google Scholar 

  259. Sieber, P., Kamber, B., Riniker, B., and Rittel, W (1980) Iodine oxidation of S-trityl-and S-acetamidomethyl-cysteine-peptides containing tryptophan · conditions leading to the formation of tryptophan-2-thioethers Helv Chem Acta 63, 2358–2363

    CAS  Google Scholar 

  260. Bishop, P. and Chmielewski, J. (1992) Cyanogen iodide · a new reagent for disulfide bond formation in peptides. Tetrahedron Lett. 42, 6263–6266.

    Google Scholar 

  261. Akaji, K., Tatsumi, T., Yoshida, M, Kimura, T., Fujiwara, Y., and Kiso, Y. (1991) Synthesis of cystine-peptide by a new disulfide bond-forming reaction using the silyl chloride-sulphoxide system. J. Chem. Soc, Chem Commun., 167–169.

    Google Scholar 

  262. Koide, T, Otaka, A., Suzuki, H, and Fujii, N. (1991) Selective conversion of S-protected cysteine derivatives to cystine by various sulphoxide-silyl compound / trifluoroacetic acid systems Syn. Lett, 345–346

    Google Scholar 

  263. Akaji, K., Tatsumi, T, Yoshida, M., Kimura, T, Fujiwara, Y, and Kiso, Y. (1992) Disulfide bond formation using the silyl chloride-sulfoxide system for the synthesis of a cystine peptide. J Am. Chem. Soc 114, 4137–4143, and references cited therein.

    CAS  Google Scholar 

  264. Otaka, A., Koide, T, Shide, A., and Fujii, N. (1991) Application of dimethyl-sulphoxide (DMSO) / trifluoroacetic acid (TFA) oxidation to the synthesis of cystine-containing peptide. Tetrahedron Lett. 32, 1223–1226

    CAS  Google Scholar 

  265. Funakoshi, S., Murayama, E, Guo, L., Fujii, N, and Yajima, H. (1988) A modified benzhydrylamine as a handle reagent for the solid phase synthesis of peptide amides based on the fluorenylmethoxycarbonyl method J. Chem. Soc, Chem Commun., 382–384.

    Google Scholar 

  266. Seidel, C, Klein, C, Empl, B., Bayer, H., Lin, M., and Batz, H.-G. (1990) Synthesis of cyclic peptide for diagnostic use by oxidation of its resin-bound intermediate, in Peptides 1990: Proceedings of the Twenty-First European Peptide Symposium (Giralt, E and Andreu, D., eds.), Escom, Leiden, The Netherlands, pp. 236–237.

    Google Scholar 

  267. Albrecht, E., Harada, Y., Cooper, G. J. S., Jones, H., and Lehman deGaeta, L. S. (1992) Synthesis and activity of human amylin and analogues, in Peptides—Chemistry and Biology. Proceedings of the Twelfth American Peptide Symposium (Smith, J. A. and Rivier, J. E., eds.), Escom, Leiden, The Netherlands, pp 441–442.

    Google Scholar 

  268. Canas, M., Jodas, G., Albericio, F., Andreu, D., García-Antón, J. M., Parente, A., and Ponsati, B. (1993) Optimization of iodine oxidation methods for S-Acm, S-Trt dicysteinyl-peptides on the resin, in Peptides 1992. Proceedings of the Twenty-Second European Peptide Symposium (Schneider, C H. and Eberle, A. N., eds.), Escom, Leiden, The Netherlands, pp. 401–402.

    Google Scholar 

  269. Edwards, W. B., Anderson, C. J, Welch, M. J., Fields, C. G., and Fields, G. B. (1994) The synthesis of DTPA-D-Phe1-octreotide by solid-phase synthesis. J. Labelled Compds. Radiopharm. 35, 359–361.

    Google Scholar 

  270. Deadman, U., Lu, X, Moreno, A, Rahman, S., Chino, N, Claeson, G, Kakkar, V. V., and Williams, J A (1993) Novel procedure for on-resin cyclisation via disulphide bond formation in large rings Abstract P314, Thirteenth American Peptide Symposium, Edmonton, Canada

    Google Scholar 

  271. Barlos, K., Gatos, D., Kutsogianni, S, Papaphotiou, G., Poulos, C, and Tsegenidis, T. (1991) Solid phase synthesis of partially protected and free peptides containing disulphide bonds by simultaneous cysteine oxidation-release from 2-chlorotrityl resin Int. J Peptide Protein Res. 38, 562–568.

    CAS  Google Scholar 

  272. Harpp, D. N. and Back, T. G. (1971) The synthesis of some new cysteine-containing unsymmetrical disulfides. J. Org. Chem. 36, 3828–3829.

    CAS  PubMed  Google Scholar 

  273. Brois, S. J., Pilot, J F., and Barnum, H. W. (1970) A new pathway to unsymmetrical disulfides. The thiol-induced fragmentation of sulfenyl thiocarbonates. J. Am. Chem Soc 92, 7629–7631

    CAS  Google Scholar 

  274. Ten Kortenaar, P B W and van Nispen, J. W. (1988) Formation of open-chain asymmetrical cystine peptides on a solid support. Synthesis of pGlu-Asn-Cyt-Pro-Arg-Gly-OH. Coll Czech. Chem. Commun. 53, 2537–2541.

    CAS  Google Scholar 

  275. Moroder, L., Marchiori, F., Borin, G., and Scoffone, E. (1973) Studies on cytochrome c. Part II. Synthesis of the protected heptapeptide (sequence 17-23) of baker’s yeast iso-1-cytochrome c. Biopolymers 12, 493–505.

    CAS  Google Scholar 

  276. Castell, J. V. and Tun-Kyi, A. (1979) The removal of S-cysteine protection by means of 2-pyridine sulfenyl chloride and the subsequent formation of disulfide bonds Helv. Chim. Acta 62, 2507–2510

    CAS  Google Scholar 

  277. Crimmins, D. L. (1989) Analysis of disulfide-linked homo-and hetero-peptide dimers with strong cation-exchange sulfoethyl aspartamide column. Peptide Res 2, 395–401, and references cited therein.

    CAS  Google Scholar 

  278. Kimura, T., Matsueda, R, Nakagawa, Y., and Kaiser, E. T. (1982) New reagents for the introduction of the thiomethyl group at sulfhydryl residues of proteins with concomitant spectrophotometnc titration of the sulfhydryls: methyl 3-nitro-2-pyridyl disulfide and methyl 2-pyridyl disulfide. Anal Biochem. 122, 274–282.

    CAS  PubMed  Google Scholar 

  279. Ponsati, B., Ruiz-Gayo, M, Giralt, E., Albericio, F., and Andreu, D. (1990) Solid-phase-mediated peptide heterodisulfide formation. J. Am. Chem. Soc. 112, 5345–5347.

    CAS  Google Scholar 

  280. Royo, M., Albericio, F., Giralt, E., and Pons, M. (1993) Use of cyclic dimers of palindromic peptides for the study of coiled-coils, in Peptides 1992: Proceedings of the Twenty-Second European Peptide Symposium (Schneider, C H. and Eberle, A. N., eds.), Escom, Leiden, The Netherlands, pp. 487–488.

    Google Scholar 

  281. Baleux, F. and Dubois, P (1992) Novel version of multiple antigenic peptide allowing incorporation on a cysteine functionalized lysine tree. Int. J. Peptide Protein Res. 40, 7–12

    CAS  Google Scholar 

  282. Mukaiyama, T. and Takahashi, K. (1968) A convenient method for the preparation of unsymmetrical disulfides by the use of diethyl azodicarboxylate Tetrahedron Lett. 56, 5907–5908.

    Google Scholar 

  283. Wünsch, E. and Romani, S. (1982) A new method for the selective synthesis of unsymmetrical cystine peptides. Hoppe Seyler’s Z Physiol Chem. 363, 449–453.

    PubMed  Google Scholar 

  284. Fujii, N, Otaka, A., Watanabe, T., Arai, H., Funakoshi, S., Bessho, K., and Yajima, H. (1987) Sulphoxide-directed disulphide bond-forming reaction for the synthesis of cystine peptides. J. Chem. Soc, Chem. Commun., 1676–1678.

    Google Scholar 

  285. Fujii, N, Watanabe, T., Aotake, T, Otaka, A., Yamamoto, I., Konishi, J., and Yajima, H. (1988) Studies on peptides. CLXII. Synthesis of chicken calcitonin-gene-related peptide (cCGRP) by application of sulphoxide-directed disulfide-bond-forming reaction Chem. Pharm. Bull. 36, 3304–3311, and other contributions from this research team.

    CAS  PubMed  Google Scholar 

  286. Kangawa, K., Fukuda, A., and Matsuo, H. (1985) Structural identification of β-and γ-human atrial natriuretic polypeptides. Nature 313, 397–400

    CAS  PubMed  Google Scholar 

  287. Nieto, A., Postingl, H., and Beato, M. (1977) Purification and quaternary structure of the hormonally induced protein uteroglobin. Arch. Biochem. Biophys. 180, 82–92.

    CAS  PubMed  Google Scholar 

  288. García-Echevrría, C, Albericio, F., Giralt, E., and Pons, M. (1993) Design, synthesis, and complexing properties of (1Cys-1Cys, 4Cys-4Cys)-dithiobis(Ac-L-1Cys-L-Pro-D-Val-L-4Cys-NH2). The first example of a new family of ion-binding peptides. J. Am Chem. Soc. 115, 11,663–11,670.

    Google Scholar 

  289. Hiskey, R. G., Davis, G. W., Safdy, M. E., Inui, T, Upham, R. A., and Jones, W. C, Jr. (1970) Sulfur-containing polypeptides. XIII. Bis cystine peptide derivatives. J. Org. Chem. 35, 4148–4156.

    CAS  Google Scholar 

  290. Ryle, A. P., Sanger, F., Smith, L. F., and Kitai, R. (1955) The disulphide bonds of insulin. Biochem. J. 60, 541–556.

    CAS  PubMed Central  PubMed  Google Scholar 

  291. Smith, D. L. and Zhou, Z. (1990) Strategies for locating disulfide bridges in proteins. Methods Enzymol. 193, 374–389, and references cited therein.

    CAS  PubMed  Google Scholar 

  292. Inglis, A. S. (1983) Single hydrolysis method for all amino acids, including cysteine and tryptophan. Methods Enzymol. 91, 26–36.

    CAS  PubMed  Google Scholar 

  293. McMullen, B A., Fujikawa, K., and Davie, E. W (1991) Location of the disulfide bonds in human plasma prekallikrein the presence of four novel apple domains in the amino-terminal portion of the molecule. Biochemistry 30, 2050–2056.

    CAS  PubMed  Google Scholar 

  294. Sardana, M., Sardana, V., Rodkey, J., Wood, T., Ng, A., Vlasuk, G. P., and Waxman, L. (1991) Determination of disulfide bond pairs and stability in recom-binant tick anticoagulant peptide. J. Biol. Chem. 266, 13,560–13,563.

    CAS  PubMed  Google Scholar 

  295. Calvete, J. J., Schäfer, W., Soszka, T., Lu, W., Cook, J. J., Jameson, B. A., and Niewiarowski, S (1991) Identification of the disulfide bond pattern in albolabrin, an RGD-containing peptide from the venom of trimeresurus albolabris: significance for the expression of platelet aggregation inhibitory activity. Biochemistry 30, 5225–5229.

    CAS  PubMed  Google Scholar 

  296. Ishibashi, Y., Kikuchi, T., Wakimasu, M., Mizuta, E., and Fujino, M (1991) Assignment of disulfide bonds in synthetic endothelin-1 isomers by fast atom bombardment mass spectrometry. Biol. Mass Spectrometry 20, 703–708.

    CAS  Google Scholar 

  297. Bendixen, E., Halkier, T., Magnusson, S., Sottrup-Jensen, L., and Kristensen, T. (1992) Complete primary structure of bovine β2-glycoprotein I: localization of the disulfide bridges. Biochemistry 31, 3611–3617.

    CAS  PubMed  Google Scholar 

  298. Töpfer-Petersen, E., Calvete, J., Schafer, W., and Henschen, A. (1990) Complete localization of the disulfide bridges and glycosylation sites in boar sperm acrosin. FEBS Lett. 275, 139–142.

    PubMed  Google Scholar 

  299. Calvete, J. J., Wang, Y., Mann, K., Schafer, W., Niewiarowski, S., and Stewart, G. J (1992) The disulfide bridge pattern of snake venom disintegrins, flavoridin and echistatin. FEBS Lett. 309, 316–320, and references cited therein

    CAS  PubMed  Google Scholar 

  300. Axelsson, K., Johansson, S., Eketorp, G., Zazzi, H., Hemmendorf, B., and Gellefors, P. (1992) Disulfide arrangement of human insulin-like growth factor I derived from yeast and plasma. Eur. J. Biochem 206, 987–994, and references cited therein.

    CAS  PubMed  Google Scholar 

  301. Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) Evidence for difference in the roles of two cysteine residues involved in disulfide bond formation in the folding of human lysozyme. J. Biol. Chem. 265, 7570–7575

    CAS  PubMed  Google Scholar 

  302. Fabri, L., Nice, E. C, Ward, L. D., Maruta, H., Burgess, A. W., and Simpson, R. J. (1992) Characterization of bovine heparin-binding neurotrophic factor (HBNF): assignment of disulfide bonds. Biochem. Internat. 228, 1–9.

    Google Scholar 

  303. Smith, M. C, Cook, J. A., Furman, T. C, and Occolowitz, J. L. (1989) Structure and activity dependence of recombinant human insulin-like growth factor II on disulfide bond pairing. J. Biol. Chem. 264, 9314–9321.

    CAS  PubMed  Google Scholar 

  304. Carr, C, Aykent, S, Kimack, N. M., and Levine, A. D. (1991) Disulfide assignments in recombinant mouse and human interleukin 4. Biochemistry 30, 1515–1523

    CAS  PubMed  Google Scholar 

  305. Hess, D., Schaller, J., and Rickli, E. E. (1991) Identification of the disulfide bonds of human complement Cls. Biochemistry 30, 2827–2833

    CAS  PubMed  Google Scholar 

  306. Ng, N. F. L. and Hew, C. L. (1992) Structure of an antifreeze polypeptide from the sea raven. Disulfide bonds and similarity to lectin-binding proteins. J. Biol Chem. 267, 16,069–16,075.

    CAS  PubMed  Google Scholar 

  307. Kumazaki, T. and Ishii, S.-I. (1990) Disulfide bridge structure of ascidian trypsin inhibitor I: similarity to Kazal-type inhibitors. J Biochem. 107, 414–419.

    CAS  PubMed  Google Scholar 

  308. Lepage, P., Bitsch, F., Roecklin, D., Keppi, E., Dimarcq, J.-L, Reichhart, J.-M, Hoffman, J. A., Roitsch, C, and Van Dorsselaer, A. (1991) Determination of disulfide bridges in natural and recombinant insect defensin A. Eur. J. Biochem. 196, 735–742.

    CAS  PubMed  Google Scholar 

  309. Violand, B. N., Tou, J. S., Vineyard, B. D., Siegel, N. R., Smith, C E., Pyla, P D, Zobel, J F., Toren, P. C, and Kolodziej, E W. (1991) Determination of the disulfide bond pairings in bovine transforming growth factor-α Int. J Peptide Protein Res 37, 463–467.

    CAS  Google Scholar 

  310. Huth, J. R., Mountjoy, K., Perini, F., and Ruddon, R. W. (1992) Intracellular folding pathway of human chorionic gonadotropin β subunit. J. Biol. Chem 267, 8870–8879.

    CAS  PubMed  Google Scholar 

  311. Gross, E. and Witkop, B. (1962) Nonenzymatic cleavage of peptide bonds, the methionine residues in bovine pancreatic nbonuclease J. Biol. Chem 237, 1856–1860.

    CAS  PubMed  Google Scholar 

  312. Edman, P. and Henschen, A. (1975) Sequence determination, in Protein Sequence Determination · A Sourcebook of Methods and Techniques (Needleman, S B, ed), Springer-Verlag, New York, pp 232–279.

    Google Scholar 

  313. Hunkapiller, M. W. (1988) Gas phase sequence analysis of proteins/peptides, in Protein/Peptide Sequence Analysis: Current Methodologies (Brown, A S, ed), CRC, Boca Raton, FL, pp 87–117

    Google Scholar 

  314. Burman, S., Wellner, D., Chait, B., Chaudhary, T, and Breslow, E. (1989) Complete assignment of neurophysin disulfides indicates pairing in two separate domains. Proc. Natl. Acad Sci. USA 86, 429–433

    CAS  PubMed Central  PubMed  Google Scholar 

  315. Haniu, M., Acklin, C, Stoney, K, Kenney, W. C, and Rohde, M F (1994) Direct assignment of disulfide bonds by Edman degradation of selected peptide fragments. Int. J. Peptide Protein Res. 43, 81–86 and references cited therein.

    CAS  Google Scholar 

  316. Landon, M. (1977) Cleavage at aspartyl-prolyl bonds Methods Enzymol. 47, 145–149

    CAS  PubMed  Google Scholar 

  317. Carrey, E A. (1989) Peptide mapping, in Protein Structure: A Practical Approach (Creighton, T. E., ed.), IRL, Oxford, pp. 117–144, and references cited therein.

    Google Scholar 

  318. Canova-Davis, E, Kessler, T. J., and Ling, V T (1991) Transpeptidation during the analytical proteolysis of proteins. Anal. Biochem. 196, 39–45.

    CAS  PubMed  Google Scholar 

  319. Brown, J R. and Hartley, B. S (1966) Location of disulphide bridges by diagonal paper electrophoresis The disulphide bridges of bovine chymotrypsinogen A Biochem. J 101, 214–228

    CAS  PubMed Central  PubMed  Google Scholar 

  320. Walsh, K A, McDonald, R. M., and Bradshaw, R A (1970) Automatic systems for detecting cystine and cystinyl peptides during column chromatography Anal Biochem. 35, 193–202.

    CAS  PubMed  Google Scholar 

  321. Thannhauser, T. W., McWherter, C A., and Scheraga, H. A. (1985) Peptide mapping of bovine pancreatic ribonuclease A by reverse-phase high-performance liquid chromatography. II. A two-dimensional technique for determination of disulfide pairings using a continuous-flow disulfide-detection system. Anal. Biochem. 149, 322–330.

    CAS  PubMed  Google Scholar 

  322. Creighton, T. E (1989) Disulphide bonds between cysteine residues, in Protein Structure: A Practical Approach (Creighton, T. E., ed.), IRL, Oxford, pp 155–167, and references cited therein.

    Google Scholar 

  323. Stone, K. L., Elliott, J. I., Peterson, G., McMurray, W, and Williams, K. R. (1990) Reversed-phase high-performance liquid chromatography for fractionation of enzymatic digests and chemical cleavage products of proteins. Methods Enzymol 193, 389–412.

    CAS  PubMed  Google Scholar 

  324. Thannhauser, T. W., Konishi, Y., and Scheraga, H. A. (1984) Sensitive quantitative analysis of disulfide bonds in polypeptides and proteins. Anal. Biochem. 138, 181–188.

    CAS  PubMed  Google Scholar 

  325. Sueyoshi, T., Miyata, T, Iwanaga, S., Toyo’oka, T., and Imai, K (1985) Application of a fluorogenic reagent, ammonium 7-fluorobenzo-2-oxa-l,3-diazole-4-sul-fonate for detection of cystine-containing peptides. J. Biochem. 97, 1811–1813.

    CAS  PubMed  Google Scholar 

  326. Lazure, C, Rochemont, J., Seidah, N. G., and Chrétien, M. (1985) Novel approach to rapid and sensitive localization of protein disulfide bridges by high-performance liquid chromatography and electrochemical detection J. Chromatography 326, 339–348.

    CAS  Google Scholar 

  327. Sun, Y, Smith, D. L., and Shoup, R. E (1991) Simultaneous detection of thiol-and disulfide-containing peptides by electrochemical high-performance liquid chromatography with identification by mass spectrometry. Anal. Biochem. 197, 69–76, and references cited therein.

    CAS  PubMed  Google Scholar 

  328. Selsted, M. E. and Harwig, S. S. L. (1989) Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J. Biol. Chem. 264, 4003–4007, and references cited therein.

    CAS  PubMed  Google Scholar 

  329. Hiskey, R. G., Li C-D., and Vunnam, R R. (1975) Sulfur-containing polypeptides. XVIII Unambiguous synthesis of the parallel and antiparallel isomers of some bis-cystine peptides. J. Org. Chem. 40, 3697–3703.

    CAS  PubMed  Google Scholar 

  330. Weissman, J. S. and Kim, P. S (1991) Reexamination of the folding of BPTI: predominance of native intermediates. Science 253, 1386–1393, and references cited therein.

    CAS  PubMed  Google Scholar 

  331. Chatrenet, B. and Chang, J.-Y. (1992) The folding of hirudin adopts a mechanism of trial and error. J. Biol. Chem. 267, 3038–3043.

    CAS  PubMed  Google Scholar 

  332. Andersson, M., Ostman, A., Bäckström, G., Hellman, U., George-Nascimento, C, Westermark, B., and Heldin, C.-H. (1992) Assignment of interchain disulfide bonds in platelet-derived growth factor (PDGF) and evidence for agonist activity of monomeric PDGF. J. Biol. Chem. 267, 11,260–11,266

    CAS  PubMed  Google Scholar 

  333. Huth, J. R, Mountjoy, K, Perini, F., Bedows, E., and Ruddon, R. W. (1992) Domain-dependent protein folding is indicated by the intracellular kinetics of disulfide bond formation of human chorionic gonadotropin β subunit. J. Biol. Chem. 267, 21,396–21,403.

    CAS  PubMed  Google Scholar 

  334. Fenn, J. B., Mann, M., Meng, C. K, Wong, S. F., and Whitehouse, C. M. (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246, 64–71, and references cited therein.

    CAS  PubMed  Google Scholar 

  335. Desiderio, D. M. (ed) (1991) Mass Spectrometry of Peptides CRC, Boca Raton, FL.

    Google Scholar 

  336. Burlingame, A L, Baillie, T. A., and Russell, D. H. (1992) Mass spectrometry. Anal. Chem. 64, 467R–502R, and references cited therein

    CAS  PubMed  Google Scholar 

  337. Chait, B. T. and Kent, S. B.H. (1992) Weighing naked proteins · practical, high-accuracy mass measurement of peptides and proteins. Science 257, 1885–1894, and references cited therein.

    CAS  PubMed  Google Scholar 

  338. Yazdanparast, R., Andrews, P C, Smith, D. L, and Dixon, J. E (1987) Assignment of disulfide bonds in proteins by fast atom bombardment mass spectrometry J. Biol. Chem. 262, 2507–2513.

    CAS  PubMed  Google Scholar 

  339. Raschdorf, F., Dahinden, R., Maerki, W., Richter, W. J., and Merryweather, J. P. (1988) Location of disulphide bonds in human insulin-like growth factor (IGFs) synthesized by recombinant DNA technology. Biomed. Environ. Mass Spectrom. 16, 3–8.

    CAS  PubMed  Google Scholar 

  340. Griffin, P. R., Shabanowitz, J., Yates, III, J. R., Zhu, N. Z., and Hunt, D. F. (1989) Laser photodissociation Fourier transform mass spectrometry: new methodology for sequence analysis of oligopeptides and location of disulfide bonds, in Techniques in Protein Chemistry (Hugli, T. E., ed.), Academic, San Diego, pp 160–167.

    Google Scholar 

  341. Sørenson, H. H., Thomsen, J., Bayne, S., HØjrup, P., and Roepstorff, P. (1990) Strategies for determination of disulphide bridges in proteins using plasma desorption mass spectrometry Biomed. Env Mass Spectrom 19, 713–720.

    Google Scholar 

  342. Despeyroux, D., Bordas-Nagy, J., and Jennings, K. R. (1991) Determination of the amino acid sequence of cystine-containing peptides by tandem mass spectrometry Rapid Commun. Mass Spectrom. 5, 156–159

    CAS  PubMed  Google Scholar 

  343. Stewart, A. E., Raffioni, S., Chaudhary, T., Chait, B T., Luporini, P, and Bradshaw, R. A. (1992) The disulfide bond pairing of the pheromones Er-1 and Er-2 of the ciliated protozoan Euplotes raikovi. Protein Sci. 1, 777–785.

    CAS  Google Scholar 

  344. Mancini, M. L. (1989) Enhancing the stability of disulfide-bond containing peptides under fast-atom bombardment conditions. Biomed Environ. Mass Spectrom. 18, 1102–1104.

    CAS  Google Scholar 

  345. Visentini, J., Gauthier, J., and Bertrand, M. J. (1989) Effect of trifluoroacetic acid on the reduction of disulfide bridges in peptides analyzed by fast-atom bombardment mass spectrometry Rapid Commun. Mass Spectrom. 3, 390–395.

    CAS  PubMed  Google Scholar 

  346. Bolgar, M. S. and DiDonato, G. C. (1992) Disulfide bond assignment of endothelin-1 and analogues by ionspray mass spectrometry, in Proceedings of the 40th ASMS Conference on Mass Spectrometry and Allied Topics, pp. 1799–1800.

    Google Scholar 

  347. Feng, R., Bell, A., Dumas, F., and Konishi, Y. (1992) A fast and simple method for accurate counting of cysteines, disulfide bridges and free SH groups in proteins using ionsprayTM mass spectrometry, in Biotechnology International (North, K., ed.), Century, London, pp. 155–158.

    Google Scholar 

  348. Sun, Y. and Smith, D. L (1988) Identification of disulfide-containing peptides by performic acid oxidation and mass spectrometry. Anal. Biochem. 172, 130–138 and references cited therein

    CAS  PubMed  Google Scholar 

  349. Morris, H. R. and Pucci, P. (1985) A new method for rapid assignment of S-S bridges in proteins. Biochem. Biophys. Res. Commun. 126, 1122–1128.

    CAS  PubMed  Google Scholar 

  350. Savoy, L.-A., Greer, F M., and Morris, H. R. (1993) Peptide and protein analysis by electrospray mass spectrometry, in Peptides 1992: Proceedings of the Twenty-Second European Peptide Symposium (Schneider, C. H. and Eberle, A. N., eds.), Escom, Leiden, The Netherlands, pp. 441–442

    Google Scholar 

  351. Rodriguez, H., Nevins, B., and Chakel, J. (1989) Evaluation of methods for the analysis of disulfide containing peptides by fast atom bombardment mass spectrometry, in Techniques in Protein Chemistry (Hugli, T. E., ed.), Academic, San Diego, pp. 186–194

    Google Scholar 

  352. Bean, M. F. and Carr, S. A. (1992) Characterization of disulfide bond position in proteins and sequence analysis of cystine-bridged peptides by tandem mass spectrometry. Anal Biochem 201, 216–226, and references cited therein.

    CAS  PubMed  Google Scholar 

  353. Hidaka, Y. and Schimonishi, Y. (1989) A new method for determination of disulfide pairing in peptides. Bull. Chem. Soc. Jpn. 62, 1986–1994.

    CAS  Google Scholar 

  354. Hidaka, Y., Sato, K, Nakamura, H., Kobayashi, J., Ohizumi, Y, and Shimonishi, Y. (1990) Disulfide pairings in geographutoxin I, a peptide neurotoxin from Conus geographus. FEBS Lett. 264, 29–32.

    CAS  Google Scholar 

  355. Grant, G. A. and Chiappinelli, V. A. (1985) K-Bungarotoxin: complete ammo acid sequence of a neuronal nicotinic receptor probe. Biochemistry 24, 1532–1537.

    CAS  PubMed  Google Scholar 

  356. Kopeyan, C, Martinez, G, and Rochat, H. (1985) Primary structure of toxin IV of Leiurus quinquestriatus quinquestriatus. Characterization of a new group of scorpion toxins. FEBS Lett. 181, 211–217

    CAS  Google Scholar 

  357. Ryan, R J., Charlesworth, M. C, McCormick, D. J, Milius, R. P., and Keutmann, H T. (1988) The glycoprotein hormones: recent studies of structure-function relationships. FASEB J. 2, 2661–2669.

    CAS  PubMed  Google Scholar 

  358. Nakaya, K., Omata, K, Okahashi, I., Nakamura, Y., Kolkenbrock, H., and Ulbrich, N (1990) Amino acid sequence and disulfide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur. J. Biochem 193, 31–38.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc.

About this protocol

Cite this protocol

Andreu, D., Albericio, F., Solé, N.A., Munson, M.C., Ferrer, M., Barany, G. (1994). Formation of Disulfide Bonds in Synthetic Peptides and Proteins. In: Pennington, M.W., Dunn, B.M. (eds) Peptide Synthesis Protocols. Methods in Molecular Biology, vol 35. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-273-6:91

Download citation

  • DOI: https://doi.org/10.1385/0-89603-273-6:91

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-273-6

  • Online ISBN: 978-1-59259-522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics