Skip to main content

HF Cleavage and Deprotection Procedures for Peptides Synthesized Using a Boc/Bzl Strategy

  • Protocol
Peptide Synthesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 35))

Abstract

On completion of chemical synthesis of the peptide chain, the final step requires the removal from the solid-phase support and liberation of the protected side chains of the trifunctional amino acids (1). Many different approaches to this problem have been established, but the procedure most widely used for all Boc/Bzl-based peptides has been treatment with liquid HF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merrifield, R. B. (1963) Solid phase synthesis peptide synthesis: the synthesis of a tetrapeptide. J. Am. Chetn. Soc. 85, 2149–2154.

    Article  CAS  Google Scholar 

  2. Hyman, H H and Garber, R. A. (1959) The Hammet acidity function Ho for trifluoroacetic acid solutions of sulfuric and hydrofluoric acids J Am Chem Soc. 81, 1847–1849.

    Article  CAS  Google Scholar 

  3. Sakakibara, S(1971) The use of hydrogen fluoride in peptide chemistry, in Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, vol. 1 (Weinstein, B, ed), Dekker, New York, pp. 51–85.

    Google Scholar 

  4. Erickson, B W. and Merrifield, R. B. (1973) The acid stability of several benzylic protecting groups used in solid-phase peptide synthesis. The rearrangement of O-benzyltyrosme to 3-benzyltyrosine. J. Am. Chem Soc. 95, 3750–3756

    Article  CAS  PubMed  Google Scholar 

  5. Engelhard, M and Merrifield, R. B (1978) Tyrosine protecting groups: minimization of rearrangement to 3-alkyltyrosine during acidolysis. J. Am. Chem. Soc. 100, 3559–3563.

    Article  CAS  Google Scholar 

  6. Yamashiro, D. and Li, C. H. (1973) Protection of tyrosine in solid-phase peptide synthesis. J. Org. Chem. 38, 591,592.

    Article  CAS  PubMed  Google Scholar 

  7. Bodanszky, M. and Martinez, J. (1981) Side reactions in peptide synthesis. Synthesis 333–356.

    Google Scholar 

  8. Lundt, B. F, Johansen, N. C, Voelund, A, and Markussen, J. (1978) Removal of t-butyl and t-butyloxycarbonyl protecting groups with trifluoroacetic acid. Int. J. Peptide and Protein Res. 12, 258–268.

    Article  CAS  Google Scholar 

  9. Masui, Y., Chino, N., and Sakakibara, S. (1980) The modification of tryptophan residues during the acidolytic cleavage of Boc-groups. Bull. Chem. Soc. Jpn. 53, 464–468.

    Article  CAS  Google Scholar 

  10. Tarn, J. P., Heath, W. F., and Merrifield, R. B. (1982) SN1 and SN2 mechanism for the deprotection of synthetic peptides by hydrogen fluoride. Studies to minimize tyrosine alkylation side reaction. Int. J. Peptide Protein Res. 21, 57–65.

    Google Scholar 

  11. Feinberg, R. S. and Merrifield, R. B. (1975) Modification of peptides containing glutamic acid by hydrogen fluoride-anisole mixtures. Gamma-acylation of anisole or the glutamyl nitrogen. J. Am. Chem. Soc. 97, 3485–3496.

    Article  CAS  PubMed  Google Scholar 

  12. Baba, T., Sugiyama, H, and Seto, S. (1973) Rearrangement of a and (3-aspartyl peptide with anhydrous HF. Chem. Pharm. Bull (Tokyo) 21, 207–209.

    Article  CAS  Google Scholar 

  13. Yang, L L. and Merrifield, R. B(1976) The a-phenacyl ester as a temporary protecting group to minimize cyclic imine formation during subsequent treatment of asparty peptides with HF. J. Org. Chem 41, 1032–1041.

    Article  CAS  PubMed  Google Scholar 

  14. Tarn, J. P., Heath, W. F, and Merrifield, R. B. (1983) SN2 deprotection of synthetic peptides with a low concentration of HF in dimethylsulfide evidence and application in peptide synthesis. J. Am. Chem. Soc. 103, 6442,6455.

    Google Scholar 

  15. Tarn, J. P., Heath, W. F., and Merrifield, R. B. (1986) Mechanism for the removal of benzyl protecting groups in synthetic peptides by trifluoromethanesulfonic acid-trifluoroacetic acid-dimethylsulfide. J. Am Chem. Soc. 108, 5242–5251.

    Article  Google Scholar 

  16. Tarn, J. P. and Merrifield, R. B. (1987) Strong acid cleavage of synthetic peptides: mechanisms and methods, in The Peptides: Analysis, Synthesis and Biology, vol. 9 (Meienhofer, J. and Udenfriend SO, eds.), Academic, Orlando, FL, pp. 185–248.

    Google Scholar 

  17. Yajima, H., Fujii, N., Ogawa, H, and Kawatani, H. (1974) Trifluoromethanesulfonic acid, as a deprotection reagent in peptide chemistry. J. Chem. Soc. Chem. Commun. pp. 107,108.

    Google Scholar 

  18. Matsueda, G. R. (1982) Deprotection of Nin-formyl tryptophan residues using 1,2 ethanedithiol in liquid hydrogen fluoride. Int. J. Peptide Protein Res. 20, 26–34.

    Article  CAS  Google Scholar 

  19. Stewart, J. M. and Young, J. D. (1984) in Solid Phase Peptide Synthesis, Pierce Chemical Co., Rockford IL.

    Google Scholar 

  20. Tarn, J. P., Wong, T. W., Riemen, M. W., Tjoeng, F. S., and Merrifield, R. B. (1979) Cyclohexyl ester as a new protecting group for aspartyl peptides to minimize aspartimide formation in acidic and basic treatments. Tet. Lett. 42, 4033–4036.

    Google Scholar 

  21. Heath, W. F, Tarn, J P., and Merrifield, R. B. (1986) Improved deprotection of cysteine-containing peptides in HF. Int. J. Peptide Protein Res. 28, 498–507.

    Article  CAS  Google Scholar 

  22. Garsky, V. M., Lumma, P. K, Freidinger, R. M., Pitzenberger, S. M., Randall, W. C, Veber, D. F., Gould, R. J., and Friedman, P. A. (1989) Chemical synthesis of echistatin, a potentent inhibitor of platelet aggregation from Echi carinatus: synthesis and biological activity of selected analogs. Proc. Natl. Acad. Set USA 86, 4022–4026.

    Article  CAS  Google Scholar 

  23. Westerberg, P, Wernstedt, C, Wilander, E., Hayden, D W., O’Brien, T. D., and Johnson, K. H. (1987) Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide-like protein also present in normal islet cells. Proc. Natl. Acad. Sci. USA 84, 3881–3885

    Article  Google Scholar 

  24. Hope, D B., Murti, V. V S, and Du Vigneaud, V. (1962) A highly potent analog of oxytocin, desaminooxytocin. J. Biol. Chem. 237, 1563–1566.

    CAS  PubMed  Google Scholar 

  25. Sawyer, T J., Staples, D. J, de Launo Castucci, A M, and Hadley, M. E. (1989) Discovery and structure-activity relationships of novel α-melanocyte stimulating hormone inhibitors Peptide Res. 2, 140–146

    CAS  Google Scholar 

  26. Chandler, P., Pennington, M. W., Maccecchini, M. L., Nashed, N, and Skolnick, P (1993) Polyamme-like actions of peptides derived from conantokin-G, an NMDA antagonist J.Biol Chem 268, 17,173–17,178

    CAS  PubMed  Google Scholar 

  27. Tanaka, M, Haniu, M., Yasunobu, K. T., and Norton, T R. (1977) Amino acid sequence of the Anthopleura xanthogrammica heart stimulant anthopleurin-A. Biochemistry 16, 204–208.

    Article  CAS  PubMed  Google Scholar 

  28. Tarn, J. P. (1987) Synthesis of biologically active transforming growth factor alpha. Int. J. Peptide Protein Res 29, 421–431.

    Google Scholar 

  29. Pennington, M. W, Festin, S. M., Maccecchini, M. L, Dick, F., and Scarborough, P. E. (1991) HIV protease, chromogenic substrate and inhibitor, in Peptides 1990 (Giralt, E and Andreu, D. eds.), Escom, Leiden, Netherlands, pp. 787–789

    Chapter  Google Scholar 

  30. Bangalore, N., Travis, J., Onuka, V C, Pohl, J., and Shafer, W M. (1990) Identification of the primary antimicrobial domains in human neutrophil cathepsin-GJ. Biol. Chem. 265, 13,584–13,588.

    CAS  PubMed  Google Scholar 

  31. Gan Z R, Gould, R. J., Jacobs, J W, Friedman, P. A.,and Polokoff, M. A.(1988) Echistatin, a potent platelet aggregation inhibitor from the venom of the viper, Echis carinatus. J. Biol Chem. 263, 19,827–19,832.

    CAS  Google Scholar 

  32. Bartfai, T., Bedecs, K., Land, T., Langel, U., Bertorelli, R., Girotti, P., Console S., Xu, X, Hallin, Z., Nilsson, S., Pieribone, V., and Hokfelt, T. (1991) M-15: high affinity chimenc peptide that blocks the neuronal actions of galanin in the hippocampus, locus coeruleus and spinal cord. Proc. Natl. Acad Sci. USA 88, 10,961–10,965.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Veber, D. F., Milkowski, J. D., Varga, S., Denkewalter, R. G., and Hirshmann, R (1972) Acetamidomethyl: a novel thiol protecting group for cysteine. J. Am Chem. Soc. 94, 5456–5461.

    Article  CAS  PubMed  Google Scholar 

  34. Kamber, B. (1971) Cystin peptide aus (S-acetamidomethyl-cystein)-peptiden durch oxydation mit jod· die synthese con cyclo-cystin. Helv Chim. Acta 54, 927–930

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc.

About this protocol

Cite this protocol

Pennington, M.W. (1994). HF Cleavage and Deprotection Procedures for Peptides Synthesized Using a Boc/Bzl Strategy. In: Pennington, M.W., Dunn, B.M. (eds) Peptide Synthesis Protocols. Methods in Molecular Biology, vol 35. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-273-6:41

Download citation

  • DOI: https://doi.org/10.1385/0-89603-273-6:41

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-273-6

  • Online ISBN: 978-1-59259-522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics