Skip to main content

Solvents for Solid-Phase Peptide Synthesis

  • Protocol
Peptide Synthesis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 35))

Abstract

Effective solvation of the peptide resin is perhaps the most crucial condition for efficient chain assembly during solid-phase peptide synthesis (SPPS) (1). 1H-, 2H-, 13C-, and 19F-nuclear magnetic resonance (NMR) experiments have shown that, under proper solvation conditions, the linear polystyrene chains of copoly(styrene-l%-divinylbenzene)resin (PS) are nearly as accessible to reagents as if free in solution (2–6). When PS is well solvated, diffusion of reagents is not ratelimiting (7–9). PS swelling tests are thus recommended strongly prior to synthesis (1). The swelling capability of peptidyl-PS increases with increasing peptide length owing to a net decrease in free energy from solvation of the linear peptide chains (10). Under proper solvent conditions, there was no decrease in synthetic efficiency of the model peptide (Leu-Ala-Gly-Val)n up to a length of 60 amino acids (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pugh, K, York, E. J., and Stewart, J. M. (1992) Effects of resin swelling and substitution on solid phase synthesis Int. J. Peptide Protein Res 40, 208–213

    Article  CAS  Google Scholar 

  2. Manatt, S. L., Horowitz, D., Horowitz, R., and Pinnell, R. P. (1980) Solvent swelling for enhancement of carbon-13 nuclear magnetic resonance spectral information from insoluble polymers: chloromethylation levels in crosslinked polystyrenes Anal. Chem 52, 1529–1532

    Article  CAS  Google Scholar 

  3. Ford, W T. and Balakrishnan, T (1981) Carbon-13 nuclear magnetic resonance relaxation in cross-linked polystyrene gels. Macromolecules 14, 284–288

    Article  CAS  Google Scholar 

  4. Live, D. and Kent, S. B. H. (1982) Fundamental aspects of the chemical applications of cross-linked polymers, in Elastomers and Rubber Elasticity (Mark, J. E., ed), American Chemical Society, Washington, DC, pp. 501–515.

    Chapter  Google Scholar 

  5. Ludwick, A. G., Jelinski, L. W., Live, D., Kintanar, A., and Dumais, J. J. (1986) Association of peptide chains during Merrifield solid-phase peptide synthesis· a deuterium NMR study J. Am. Chem. Soc. 108, 6493–6496.

    Article  CAS  Google Scholar 

  6. Albericio, F., Pons, M., Pedroso, E., and Giralt, E. (1989) Comparative study of supports for solid-phase coupling of protected-peptide segments. J. Org Chem. 54, 360–366.

    Article  CAS  Google Scholar 

  7. Rudinger, J. and Buetzer, P. (1975) Some rate measurements in solid phase synthesis, in Peptides 1974 (Wolman, Y., ed.), Halsted, New York, pp. 211–219.

    Google Scholar 

  8. Hetnarski, B. and Merrifield, R. B. (1988) Kinetics of coupling reactions in solid phase peptide synthesis, in Peptides: Chemistry and Biology (Marshall, G. R., ed.), Escom, Leiden, The Netherlands, pp. 220–222.

    Chapter  Google Scholar 

  9. Pickup, S., Blum, F. D., and Ford, W. T (1990) Self-diffusion coefficients of Bocamino acid anhydrides under conditions of solid phase peptide synthesis. J Polym. Sci. A: Polym. Chem. 28, 931–934.

    Article  CAS  Google Scholar 

  10. Sarin, V. K., Kent, S. B H, and Merrifield, R B. (1980) Properties of swollen polymer networks: solvation and swelling of peptide-containing resins in solidphase peptide synthesis. J. Am. Chem. Soc. 102, 5463–5470.

    Article  CAS  Google Scholar 

  11. Sarin, V. K., Kent, S. B. H., Mitchell, A. R., and Merrifield, R. B. (1984) A general approach to the quantitation of synthetic efficiency in solid-phase peptide synthesis as a function of chain length. J Am. Chem. Soc. 106, 7845–7850

    Article  CAS  Google Scholar 

  12. Arshady, R, Atherton, E., Clive, D. L J, and Sheppard, RC. (1981) Peptide synthesis, part 1: preparation and use of polar supports based on poly(dimethylacrylamide). J. Chem Soc. Perkin Trans. I, 529–537.

    Article  Google Scholar 

  13. Bayer, E., Hemmasi, B, Albert, K., Rapp, W., and Dengler, M. (1983) Immobilized polyoxyethylene, a new support for peptide synthesis, in Peptides: Structure and Function (Hruby, V. J. and Rich, D. H., eds.), Pierce Chemical Co., Rockford, IL, pp. 87–90.

    Google Scholar 

  14. Bayer, E. and Rapp, W (1986) New polymer supports for solid-liquid-phase peptide synthesis, in Chemistry of Peptides and Proteins, vol. 3 (Voelter, W., Bayer, E., Ovchinnikov, Y. A., and Ivanov, V. T., eds ), Walter de Gruyter & Co., Berlin, pp 3–8.

    Google Scholar 

  15. Zalipsky, S, Albericio, F, and Barany, G. (1985) Preparation and use of an aminoethyl polyethylene glycol-crosslinked polystyrene graft resin support for solid-phase peptide synthesis, in Peptides: Structure and Function (Deber, C M, Hruby, V. J., and Kopple, K. D., eds.), Pierce Chemical Co., Rockford, IL, pp. 257–260.

    Google Scholar 

  16. Zalipsky, S. and Barany, G. (1986) Preparation of polyethylene glycol derivatives with two different functional groups at the termini. Polymer Preprints 27, 1–2.

    CAS  Google Scholar 

  17. Barany, G., Albericio, F., Biancalana, S, Bontems, S L, Chang, J. L., Eritja, R, Ferrer, M., Fields, C. G., Fields, G. B., Lyttle, M. H., Solé, N. A., Tian, Z., Van Abel, R. J., Wright, P. B, Zalipsky, S., and Hudson, D. (1992) Biopolymer synthesis on novel polyethylene glycol-polystyrene (PEG-PS) graft supports, in Peptides. Chemistry and Biology (Smith, J. A., and Rivier, J. E., eds.), Escom, Leiden, The Netherlands, pp. 603,604.

    Google Scholar 

  18. Hellermann, H., Lucas, H.-W., Maul, J., Pillai, V. N. R., and Mutter, M (1983) Poly(ethylene glycol)s grafted onto crosslinked polystyrenes, 2: multidetachably anchored polymer systems for the synthesis of solubilized peptides. Makromol. Chem. 184, 2603–2617.

    Article  CAS  Google Scholar 

  19. Bayer, E., Albert, K, Willisch, H., Rapp, W., and Hemmasi, B. (1990) 13C NMR relaxation times of a tripeptide methyl ester and its polymer-bound analogues Macromolecules 23, 1937–1940.

    Article  CAS  Google Scholar 

  20. Bayer, E. (1991) Towards the chemical synthesis of proteins. Angew. Chem Int Ed Engl. 30, 113–129.

    Article  Google Scholar 

  21. Fields, G. B. and Fields, C G. (1992) Optimization strategies for Fmoc solid-phase peptide synthesis: synthesis of triple-helical collagen-model peptides, in Innovation and Perspectives in Solid Phase Synthesis-Peptides, Polypeptides and Ohgonucleotides-1992 (Epton, R., ed.), Intercept, Andover, UK, pp 153–162

    Google Scholar 

  22. Hancock, W. S., Prescott, D J., Vagelos, P R, and Marshall, G. R. (1973) Solvation of the polymer matrix: source of truncated and deletion sequences in solid phase synthesis. J. Org Chem 38, 774–781.

    Article  CAS  Google Scholar 

  23. Westall, F. C. and Robinson, A. B. (1970) Solvent modification in Mernfield solidphase peptide synthesis. J Org. Chem 35, 2842–2844.

    Article  CAS  PubMed  Google Scholar 

  24. Kent, S. B. H. and Merrifield, R. B. (1981) The role of crosslinked resin supports in enhancing the solvation and reactivity of self-aggregating peptides: solid phase syntheses of acyl carrier protein (65-74), in Peptides 1980 (Brunfeldt, K., ed ), Pierce Chemical Co, Rockford, IL, pp. 328–333.

    Google Scholar 

  25. Sheppard, R C (1973) Solid phase peptide synthesis-an assessment of the present position, in Peptides 1971 (Nesvadba, H., ed ), North-Holland Publishers, Amsterdam, pp. 111–125.

    Google Scholar 

  26. Yamashiro, D., Blake, J., and Li, C. H. (1976) The use of trifluoroethanol for improved coupling in solid-phase peptide synthesis. Tetrahedron Lett. 1469–1472

    Google Scholar 

  27. Nakaie, C. R., Marchetto, R., Schreier, S., and Paiva, A C M. (1988) Synthetic and physicochemical studies of benzhydrylamine resins with different substitution levels: implications for solid phase peptide synthesis, in Peptides: Chemistry and Biology (Marshall, G. R., ed ), Escom, Leiden, The Netherlands, pp 249–251.

    Chapter  Google Scholar 

  28. Meister, S M. and Kent, S. B. H. (1983) Sequence-dependent coupling problems in stepwise solid phase peptide synthesis, occurrence, mechanism, and correction, in Peptides-Structure and Function (Hruby, V. J and Rich, D. H., eds.), Pierce Chemical Co., Rockford, IL, pp 103–106

    Google Scholar 

  29. Narita, M., Umeyama, H., and Yoshida, T. (1989) The easy disruption of the β-sheet structure of resin-bound human proinsulin C-peptide fragments by strong electrondonor solvents. Bull. Chem Soc. Jpn. 62, 3582–3586

    Article  CAS  Google Scholar 

  30. Live, D. H. and Kent, S. B. H. (1983) Correlation of coupling rates with physicochemical properties of resin-bound peptides in solid phase synthesis, in Peptides Structure and Function (Hruby, V. J. and Rich, D. H., eds ), Pierce Chemical Co, Rockford, IL, pp. 65–68.

    Google Scholar 

  31. Kent, S. B. H. (1985) Difficult sequences in stepwise peptide synthesis: common molecular origins in solution and solid phase?, in Peptides: Structure and Function (Deber, C. M., Hruby, V. J., and Rich, D. H., eds.), Pierce Chemical Co., Rockford, IL, pp. 407–414.

    Google Scholar 

  32. Narita, M. and Kojima, Y. (1989) The P-sheet structure-stabilizing potential of twenty kinds of amino acid residues in protected peptides Bull Chem. Soc. Jpn. 62, 3572–3576.

    Article  CAS  Google Scholar 

  33. Fields, G. B., Otteson, K. M., Fields, C. G., and Noble, R. L. (1990) The versatility of solid phase peptide synthesis, in Innovation and Perspectives in Solid Phase Synthesis (Epton, R., ed.), Solid Phase Conference Coordination, Ltd., Birmingham, UK, pp. 241–260.

    Google Scholar 

  34. Fields, G. B. and Fields, C. G. (1991) Solvation effects in solid-phase peptide synthesis. J. Am. Chem. Soc. 113, 4202–4207.

    Article  CAS  Google Scholar 

  35. Geiser, T., Beilan, H., Bergot, B. J., and Otteson, K. M. (1988) Automation of solidphase peptide synthesis, in Macromolecular Sequencing and Synthesis: Selected Methods and Applications (Schlesinger, D. H., ed.), Liss, New York, pp. 199–218.

    Google Scholar 

  36. Kitas, E. A., Knorr, R., Trzeciak, A., and Bannwarth, W. (1991) Alternative strategies for the Fmoc solid-phase synthesis of O4-phospho-L-tyrosine-containing peptides. Helv. Chim. Ada 74, 1314–1328

    Article  CAS  Google Scholar 

  37. Young, J. D., Huang, A. S., Ariel, N, Bruins, J B., Ng, D., and Stevens, R L (1990) Coupling efficiencies of amino acids in solid phase synthesis of peptides Peptide Res. 3, 194–200

    CAS  Google Scholar 

  38. van Woerkom, W J. and van Nispen, J. W. (1991) Difficult couplings in stepwise solid phase peptide synthesis: predictable or just a guess? Int. J Peptide Protein Res. 38, 103–113.

    Article  Google Scholar 

  39. Wang, S. and Foutch, G. L. (1989) Reaction rates for the production of selected hormones by solid-phase peptide synthesis. Biotechnol. Prog. 7, 111–115.

    Article  Google Scholar 

  40. Narita, M, Ishikawa, K., Chen, J.-Y., and Kim, Y. (1984) Prediction and improvement of protected peptide solubility in organic solvents. Int. J. Peptide Protein Res. 24, 580–587

    Article  CAS  Google Scholar 

  41. Narita, M., Isokawa, S., Honda, S., Umeyama, H., Kakei, H., and Obana, S. (1989) Individuality of amino acid residues in protected peptides. Bull. Chem. Soc. Jpn. 62, 773–779.

    Article  CAS  Google Scholar 

  42. Milton, S. C. F. and Milton, R. C. de L. (1990) An improved solid-phase synthesis of a difficult-sequence peptide using hexafluoro-2-propanol. Int. J. Peptide Protein Res. 36, 193–196.

    Article  CAS  Google Scholar 

  43. Narita, M., Isokawa, S., Tomotake, Y., and Nagasawa, S. (1983) Synthesis and the solid-state conformations of cross-linked resin-bound oligo(leucine)s. Polymer J 15, 25–32.

    Article  CAS  Google Scholar 

  44. Narita, M., Tomotake, Y., Isokawa, S., Matsuzawa, T., and Miyauchi, T. (1984) Syntheses and properties of resin-bound oligopeptides 2. Macromolecules 17, 1903–1906.

    Article  CAS  Google Scholar 

  45. Narita, M., Isokawa, S., Matsuzawa, T., and Miyauchi, T. (1985) Liquid-phase peptide synthesis by fragment condensation on soluble polymer support 7. Macromolecules 18, 1363–1366

    Article  Google Scholar 

  46. Mutter, M., Altmann, K H, Bellof, D, Flórsheimer, A, Herbert, J., Huber, M., Klein, B., Strauch, L., Vorherr, T., and Gremlich, H U. (1985) The impact of secondary structure formation in peptide synthesis, in Peptides· Structure and Function (Deber, C. M., Hruby, V. J., and Kopple, K. D., eds.), Pierce Chemical Co, Rockford, IL, pp 397–405.

    Google Scholar 

  47. Narita, M., Umeyama, H., Isokawa, S, Honda, S., Sasaki, C, and Kakei, H. (1989) The electron donor-acceptor interaction between mixed solvents and its influence on their β-sheet structure-disrupting potential. Bull Chem Soc Jpn. 62, 780–785.

    Article  CAS  Google Scholar 

  48. Narita, M., Umeyama, H, and Yoshida, T. (1989) Peptide segment separation by tertiary peptide bonds Bull. Chem. Soc Jpn. 62, 3577–3581.

    Article  CAS  Google Scholar 

  49. Deber, C M., Lutek, M K., Heimer, E. P, and Felix, A M (1989)Conformational origin of a difficult coupling in a human growth hormone releasing factor analog. Peptide Res. 2, 184–188

    CAS  Google Scholar 

  50. Milton, R. C. de L., Milton, S. C. F, and Adams, P A (1990) Prediction of difficult sequences in solid-phase peptide synthesis. J Am Chem. Soc. 112, 6039–6046

    Article  CAS  Google Scholar 

  51. Larsen, B. D., Larsen, C, and Holm, A (1991) Incomplete Fmoc-deprotection in solid phase synthesis, in Peptides 1990 (Giralt, E and Andreu, D, eds), Escom, Leiden, The Netherlands, pp 183–185

    Chapter  Google Scholar 

  52. Atherton, E. and Sheppard, R. C. (1985) Detection of problem sequences in solid phase synthesis, in Peptides: Structure and Function (Deber, C. M., Hruby, V J, and Kopple, K. D., eds ), Pierce Chemical Co, Rockford, IL, pp 415–418.

    Google Scholar 

  53. Hyde, C, Johnson, T, and Sheppard, R C. (1992) Internal aggregation during solid phase peptide synthesis: dimethyl sulfoxide as a powerful dissociating solvent J Chem. Soc, Chem Commun, 1573–1575

    Google Scholar 

  54. Giralt, E., Eritja, R., Pedroso, E, Granier, C, and van Rietschoten, J (1986) Convergent solid phase peptide synthesis III: synthesis of the 44-52 protected segment of the toxin II of Androctonus austrahs Hector. Tetrahedron 42, 691–698.

    Article  CAS  Google Scholar 

  55. Bagley, C J., Otteson, K. M., May, B L., McCurdy, S N, Pierce, L, Ballard, F J, and Wallace, J C (1990) Synthesis of insulin-like growth factor I using N-methyl pyrrolidinone as the coupling solvent and tnfluromethane sulphonic acid cleavage from the resin. Int J Peptide Protein Res 36, 356–361.

    Article  CAS  Google Scholar 

  56. Hoepnch, P D., Jr. and Hugli, T. E (1986) Helical conformation at the car-boxy-terminal portion of human C3a is required for full activity. Biochemistry 25, 1945–1950

    Article  Google Scholar 

  57. Ho, S P. and DeGrado, W. F. (1987) Design of a 4-helix bundle protein synthesis of peptides which self-associate into a helical protein. J Am Chem Soc. 109, 6751–6758.

    Article  CAS  Google Scholar 

  58. Mapelli, C and Swerdloff, M. D. (1991) Monitoring of conformational and reaction events in resin-bound peptides by 13C NMR spectroscopy in various solvents, in Peptides 1990 (Giralt, E and Andreu, D, eds ), Escom, Leiden, The Netherlands, pp. 316–319

    Chapter  Google Scholar 

  59. Ogunjobi, O. and Ramage, R. (1990) Ubiquitin. preparative chemical synthesis, purification and characterization Biochem Soc Trans 18, 1322–1333

    CAS  PubMed  Google Scholar 

  60. Nozaki, S. (1990) Solid-phase synthesis of steroidogenesis-activator polypeptide under continuous flow conditions. Bull. Chem. Soc. Jpn. 63, 842–846

    Article  CAS  Google Scholar 

  61. Gutmann, V. (1978) The Donor-Acceptor Approach to Molecular Interactions, Plenum, New York

    Book  Google Scholar 

  62. Narita, M., Honda, S., and Obana, S (1989) The β-sheet structure-disrupting potential of electron-donor and-acceptor solvents and role of mixed solvents in solvation of peptides Bull. Chem. Soc. Jpn. 62, 342–344

    Article  CAS  Google Scholar 

  63. Barton, A. F. M. (1983) CRC Handbook of Solubility Parameters and Other Cohesion Parameters, CRC, Boca Raton, FL.

    Google Scholar 

  64. Barton, A. F. M. (1975) Solubility parameters. Chem Rev 75, 731–753

    Article  CAS  Google Scholar 

  65. Atherton E, Woolley, V., and Sheppard, R C. (1980) Internal association in solid phase peptide synthesis: synthesis of cytochrome C residues 66-104 on polyamide supports. J. Chem. Soc, Chem. Commun. 970–971.

    Google Scholar 

  66. Guy, H. R. (1985) Amino acid side-chain partition energies and distribution of residues in soluble proteins. Biophys. J 47, 61–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Radzicka, A. and Wolfenden, R (1988) Comparing the polarities of the amino acids· Side-chain distribution coefficients between the vapor phase, cyclohexane, 1-octanol, and neutral aqueous solution. Biochemistry 27, 1664–1670.

    Article  CAS  Google Scholar 

  68. Atherton, E, Pinon, M., and Sheppard, R. C. (1985) Peptide synthesis, part 6 Protection of the sulphydryl group of cysteine in solid-phase synthesis using Nα-fluorenylmethoxycarbonylamino acids: linear oxytocin derivatives. J. Chem Soc. Perkin Trans I, 2057–2064.

    Article  Google Scholar 

  69. Bedford, J., Johnson, T., Jun, W., and Sheppard, R. C. (1992) Rate-slowing effects and side reactions in the solid phase peptide-resin matrix, in Innovation and Perspectives in Solid Phase Synthesis—Peptides, Polypeptides and Oligonucleotides— 1992 (Epton, R., ed.), Solid Phase Conference Coordination, Ltd., Birmingham, UK, pp. 213–219.

    Google Scholar 

  70. Bedford, J, Hyde, C, Johnson, T., Jun, W., Owen, D., Quibell, M., and Sheppard, R C. (1992) Amino acid structure and “difficult sequences” in solid phase peptide synthesis. Int. J. Peptide Protein Res. 40, 300–307.

    Article  CAS  Google Scholar 

  71. Thaler, A., Seebach, D, and Cardinaux, F. (1991) Lithium-salt effects in peptide synthesis, part II· improvement of degree of resin swelling and of efficiency of coupling in solid-phase synthesis. Helv. Chim. Acta 74, 628–643.

    Article  CAS  Google Scholar 

  72. Stewart, J. M. and Klis, W A (1990) Polystyrene-based solid phase peptide synthesis: the state of the art, in Innovation and Perspectives in Solid Phase Synthesis (Epton, R., ed.), Solid Phase Conference Coordination, Ltd, Birmingham, UK, pp. 1–9.

    Google Scholar 

  73. Hendrix, J. C, Halverson, K. J., Jarrett, J. T., and Lansbury, P T., Jr. (1990) A novel solvent system for solid-phase synthesis of protected peptides. the disaggregation sof resin-bound antiparallel β-sheet J. Org. Chem. 55, 4517,4518

    Article  CAS  Google Scholar 

  74. Jezek, J. and Houghten, R. A. (1991) A comparative study of BOP as a coupling agent using simultaneous multiple peptide synthesis (SMPS), in Peptides 1990 (Giralt, E. and Andreu, D., eds.), Escom, Leiden, The Netherlands, pp. 74,75.

    Chapter  Google Scholar 

  75. Beyermann, M. and Bienert, M (1992) Synthesis of difficult peptide sequences: a comparison of Fmoc-and Boc-technique. Tetrahedron Lett. 33, 3745–3748.

    Article  CAS  Google Scholar 

  76. Schnolzer, M., Alewood, P., Jones, A., Alewood, D., and Kent, S. B H (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis: rapid, high yield assembly of difficult sequences. Int. J. Peptide Protein Res 40, 180–193.

    Article  CAS  Google Scholar 

  77. Suzuki, K., Nitta, K., and Endo, N. (1975) Suppression of diketopiperazme formation in solid phase peptide synthesis Chem. Pharm. Bull. 23, 222–224.

    Article  CAS  Google Scholar 

  78. Gairi, M., Lloyd-Williams, P., Albericio, F., and Giralt, E. (1990) Use of BOP reagent for the suppression of diketopiperazine formation in Boc/Bzl solid-phase peptide synthesis. Tetrahedron Lett. 31, 7363–7366.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc.

About this protocol

Cite this protocol

Fields, C.G., Fields, G.B. (1994). Solvents for Solid-Phase Peptide Synthesis. In: Pennington, M.W., Dunn, B.M. (eds) Peptide Synthesis Protocols. Methods in Molecular Biology, vol 35. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-273-6:29

Download citation

  • DOI: https://doi.org/10.1385/0-89603-273-6:29

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-273-6

  • Online ISBN: 978-1-59259-522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics