Synthesis of Fully Protected Peptide Fragments

  • Monika Mergler
Part of the Methods in Molecular Biology book series (MIMB, volume 35)


Development of appropriate resin linker combinations for solid-phase peptide synthesis (SPPS) has allowed rapid access to (fully) protected peptide fragments with a free C-teminal carboxyl moiety. These fragments may be assembled either in solution or on resin—an approach that has some intrinsic advantages compared to the stepwise methodology (see  Chapter 15). Approaches to synthesize such fragments usually employ “orthogonal” (see Note 1) Nα-protection/side-chain protection. The orthogonal combination Fmoc/tBu can, however, only be used if the peptide resin bond is cleavable either by acids weak enough to leave tBu groups intact or by a method employing neither acids nor bases, such as photolysis (1) or catalysis by a Pd(0) complex (2).


Peptide Fragment Diisopropyl Ether Fmoc Amino Acid Coupling Step Wang Resin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lloyd-Williams, P., Gairi, M., Albericio, F., and Giralt, E. (1991) Convergent SPPS X. Synthesis and purification of protected peptide fragments using the photolabile Nbb-resin. Tetrahedron 47, 9867–9880.CrossRefGoogle Scholar
  2. 2.
    Kunz, H. and Dombo, B. (1988) Solild phase synthesis of peptides and glycopeptides on polymeric supports with allylic anchor groups. Angew. Chem. (Int. Engl. Ed.) 27, 711–713 (Angew. Chem. 100,732-734).Google Scholar
  3. 2a.
    Kunz, H. and Dombo, B. (1988) Solild phase synthesis of peptides and glycopeptides on polymeric supports with allylic anchor groups. Angew. Chem. (Int. Engl. Ed.) 27, 711-713 (Angew. Chem. 100,732–734).Google Scholar
  4. 3a.
    Rink, H. (1987) Solid phase synthesis of protected peptide fragments using a trialkoxydiphenyl-methylester resin. Tetrahedron Lett. 28,3787–3790.CrossRefGoogle Scholar
  5. 3b.
    Barlos, K., Gatos, D., Kallitsis, J., Papaphotiu, G., Sotiriu, P., Wenqing, Y., and Schafer, W. (1989) Darstellung geschützter Peptidfragmente unter Einsatz substituierter Triphenylmethylharze. Tetrahedron Lett. 30, 3943–3946.CrossRefGoogle Scholar
  6. 3c.
    Albericio, F. and Barany, G. (1991) Hypersensitive acid-labile (HAL) tris(alkoxybenzyl) ester anchoring for solid-phase synthesis of protected peptide segments. Tetrahedron Lett. 32,1015–1018.CrossRefGoogle Scholar
  7. 4.
    Sheppard, R. C. and Williams, B. J. (1982) A new protecting group combination for solid phase synthesis of protected peptides. J. Chem Soc., Chem Commun., 587–589.Google Scholar
  8. 5.
    Florsheimer, A. and Riniker, B. (1991) Solid phase synthesis of peptides with the highly sensitive HMPB-linker (4-(4-hydroxymethyl-3-methoxy phenoxy) butyric acid). Peptides 1990, Proc 21 st EPS, Platja d’ Aro, Escom, Leiden, pp. 131–133.CrossRefGoogle Scholar
  9. 6.
    Mergler, M., Nyfeler, R., Tanner, R., Gosteli, J., and Grogg, P. (1988) Peptide synthesis by a combination of solid-phase and solution methods II. Synthesis of fully protected peptide fragments on 2-methoxy-4-alkoxy-4-alkoxybenzyl alcohol resin. Tetrahedron Lett. 29,4009–4012.CrossRefGoogle Scholar
  10. 7.
    Kapumiotu, A., Ungermann, C., and Voelter, W. (1992) Optimized SPPS of the new stem cell prolifering inhibiting factor Ac-SDKP and derivation. Proc. 2 nd Int. Symp. on Innovation and Perspectives in Solid Phase Synthesis, Canterbury 1991, Intercept, Andover, pp. 319–323.Google Scholar
  11. 8.
    Mergler, M. and Nyfeler, R. (1992) Easy synthesis ofprotected peptide hydrazides on solid support. Peptides, Chemistry and Biology Proc. 12 th APS, Boston 1991, Escom, Leiden, pp. 551–552.Google Scholar
  12. 9.
    Kaiser, E., Colescott, R. L., Bossinger, C. D., and Cook, P. I. (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal. Biochem. 34, 595–598.PubMedCrossRefGoogle Scholar
  13. 10.
    Hancock, W. S. and Battersby, J. E. (1976) A new method for the detection of incomplete coupling reaction in solid phase peptide synthesis using 2,4,6-trinitrobenzenesulfonic acid. Analyt. Biochem. 71,260–263.PubMedCrossRefGoogle Scholar
  14. 11.
    Riniker, B., Fretz, H., and Kamber, B. (1993) Peptides 1992 Proc. 22 nd EPS, Interlaken, Escom, Leiden, pp. 34,35.CrossRefGoogle Scholar
  15. 11a.
    Riniker, B., Fretz, H., and Kamber, B. (1993) Peptides 1992 Proc. 22 nd EPS, Interlaken, Escom, Leiden, pp. 34,35.Google Scholar
  16. 12.
    Barany, G. and Merrifield, R. B. (1979) Solid-Phase Peptide Synthesis. The Peptides, vol. 2, Academic, New York, pp. 1–284.Google Scholar
  17. 13.
    Athertone, E., Pinori, M., and Sheppard, R. C. (1985) Peptide synthesis 6. Protection of the sulfhydryl group of cysteine in solid-phase synthesis using N α-Fluorenylmethoxycarbonyl amino acids. Linear oxytocin derivatives. J. Chem. Soc., Perkin Trans. I,2057–2064.CrossRefGoogle Scholar
  18. 14.
    White, P. (1992) Fmoc-Trp (Boc)-OH: a new derivative for the synthesis of peptides containing tryptophan. Peptides, Chemistry and Biology, Proc. 12 th APS. Boston 1991, Escom, Leiden, pp. 537–538.Google Scholar
  19. 15.
    Knorr, R., Trzeciak, A., Bannwarth, W., and Gillesen, D. (1989) New coupling reagents in peptide chemistry. Tetrahedron Lett. 30, 1927–1930.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1994

Authors and Affiliations

  • Monika Mergler
    • 1
  1. 1.Bachem Feinchemikalien AGBubendorfSwitzerland

Personalised recommendations