Expression and Secretion of a Soluble Form of Myelin-Associated Glycoprotein (MAG)

  • John Attia
  • Sanjoy Gupta
  • Robert J. Dunn
Part of the Methods in Molecular Biology book series (MIMB, volume 39)


Myelin-associated glycoprotein (MAG) was first identified as the major glycoprotein in the central nervous system (CNS) through 3Hfucose-labeling experiments (1). It is expressed on the surface of glial cells of both the CNS and peripheral nervous system (PNS). During development, it is localized throughout the wraps of loose myelin; after compaction, it is restricted to Schmidt-Lanterman incisures, paranodal loops, outer mesaxon, and in particular to the glial-axon interface (2, 3). The protein is thought to play a role in maintaining the periaxonal space. MAG has also been postulated to be involved in glial-neuron adhesion during myelination. This is based on the finding that anti-MAG antibodies inhibit oligodendrocyte-neuron adhesion by 25% (4), and that MAG liposomes bind a variety of neuronal cells (5). Observations from in vitro myelination cultures also support a role for MAG in Schwann cell adhesion, migration, and elongation along neurites (6, 7).


Sf21 Cell Leader Sequence Spinner Flask Signal Peptide Cleavage NheI Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Quarles, R. H., Everly, J. L., and Brady, R. O. (1973) Evidence for the close asso ciation of a glycoprotein with myelin in rat brain. J. Neurochem. 21, 1177–1191.PubMedCrossRefGoogle Scholar
  2. 2.
    Sternberger, N. H., Quarles, R. H., Itoyama, Y., and Webster, H. D. (1979) Myelinassociated glycoprotein demonstrated immunocytochemically in myelin and myelm-forming cells of developing rat. Proc. Natl. Acad. Sci. USA 76, 1510–1514.PubMedCrossRefGoogle Scholar
  3. 3.
    Trapp, B. D. and Quarles, R. H. (1982) Presence of the myelin-associated glyco protein correlates with alterations in the periodicity of peripheral myelin. J. Cell Biol. 92, 877–882.PubMedCrossRefGoogle Scholar
  4. 4.
    Poltorak, M., Sadoul, R., Keilhauer, G., Landa, C., Fahrig, T., and Schachner, M. (1987) Myelin-associated glycoprotein, a member of the L2/HNK-1 family of neu ral cell adhesion molecules, is involved in neuron-oligodendrocyte and oligoden drocyte-oligodendrocyte interaction. J. Cell Biol. 105, 1893–1899.PubMedCrossRefGoogle Scholar
  5. 5.
    Sadoul, R., Fahrig, T., Bartsch, U., and Schachner, M. (1990) Binding properties of liposomes containing the myelin-associated glycoprotein MAG to neural cell cultures. J. Neurosci. Res. 25, 1–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Owens, G. C. and Bunge, R. P. (1989) Evidence for an early role for myelin-asso ciated glycoprotein in the process of myelination. Glia 2, 119–128.PubMedCrossRefGoogle Scholar
  7. 7.
    Owens, G. C. and Bunge, R. P. (1991) Schwann cells infected with a recombinant retrovirus expressing myelin-associated glycoprotein antisense RNA do not form myelin. Neuron 7, 565–575.PubMedCrossRefGoogle Scholar
  8. 8.
    Arquint, M., Roder, J. C., Chia, L.-S., Down, J., Wilkinson, D., Bayley, H., Braun, P., and Dunn, R. J. (1987) Molecular cloning and primary structure of myelinassociated glycoprotein. Proc. Natl. Acad. Sci. USA 84, 600–604.PubMedCrossRefGoogle Scholar
  9. 9.
    Salzer, J. L., Holmes, W. P., and Colman, D. R. (1987) The amino acid sequences of the myelin-associated glycoprotems: homology to the lmmunoglobulin gene superfamdy. J. Cell Biol. 104, 957–965.Google Scholar
  10. 10.
    Lai, C., Brow, M. A., Nave, K.-A., Noronha, A. B., Quarles, R. H., Bloom, F. E., Milner, R. J., and Sutcliffe, J. G. (1987) Two forms of lB236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. Proc. Natl. Acad. Sci. USA 84, 4337–4341.PubMedCrossRefGoogle Scholar
  11. 11.
    Kandel, J., Bossy-Wetzel, E, Radvani, F., Klagsburn, M., Folkman, J., and Hanahan, D. (1991) Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66, 1095–1104.PubMedCrossRefGoogle Scholar
  12. 12.
    Rubartelli, A., Cozzolmo, F., Talio, M., and Sitia, R. (1990) A novel secretory pathway for interleukin lb, a protein lacking a signal sequence. EMBO J. 9, 1503–1510.PubMedGoogle Scholar
  13. 13.
    Stockli, K. A., Lottspeich, F., Sendtner, M., Masiakowski, P., Carroll, P., Gotz, R., Lindholm, D.,and Thoenen, H. (1989) Molecular cloning, expression and regional distribution of rat ciliary neurotrophic factor. Nature 342, 920–923.PubMedCrossRefGoogle Scholar
  14. 14.
    Johnson, P. W., Attia, J., Richardson, C. D., Roder, J. C., and Dunn, R. J. (1989) Synthesis of soluble myelin-associated glycoprotein in insect and mammalian cells. Gene 77, 287–296.PubMedCrossRefGoogle Scholar
  15. 15.
    Smith, G. E., Summers, M. D., and Fraser, M. J. (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol. Cell. Biol. 3, 2156–2165.PubMedGoogle Scholar
  16. 16.
    Vialard, J., Lalumiere, M., Vernet, T., Briedis, D., Alkhatib, G., Henning, D., Levin, D., and Richardson, C. (1990) Synthesis of the membrane fusion and hemagglutinin proteins of measles virus, using a novel baculovirus vector containing the beta-galactosidase gene. J. Virol. 64, 37–50.PubMedGoogle Scholar
  17. 17.
    Luckow, V. A. and Summers, M. D. (1989) High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology 170, 31–39.PubMedCrossRefGoogle Scholar
  18. 18.
    Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). Molecular Cloning: A Lubo ratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.Google Scholar
  19. 19.
    Summers, M. D. and Smith, G. E. (1987) A manual of methods for baculovirus vectors and insect cell culture procedures. Texas Agricultural Experimental Sta tion, College Station, Bull. 1555.Google Scholar
  20. 20.
    Wood, H. A. (1977) An agar overlay plaque assay method for Autographa californica nuclear polyhedrosis virus. J. Znver. Pathol. 29, 304–307.CrossRefGoogle Scholar
  21. 21.
    Chirgwin, J. M., Pryzybyla, A. E., MacDonald, R. J., and Rutter, W. J. (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonu clease. Biochemistry l8, 5294–5300.CrossRefGoogle Scholar
  22. 22.
    Yanisch-Perron, C., Vieira, J., and Messing, J. (1985) Improved M13 phage clon ing vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103–119.PubMedCrossRefGoogle Scholar
  23. 23.
    Attia, J., Hicks, L., Oikawa, K., Kay, C. M., and Dunn, R. D. (1993) Structural properties of the myelin-associated glycoprotein ectodomain. J. Neurochem. 61, 718–726.PubMedCrossRefGoogle Scholar
  24. 24.
    Matsuura, Y., Possee, R. D., Overton, H. A., and Bishop, D. H. L. (1987) Baculovirus expression vectors: the requirements for high level expression of pro teins, including glycoproteins. J. Gen. Viral. 68, 1233–1250.CrossRefGoogle Scholar
  25. 25.
    Luckow, V. A., and Summers, M. D. (1988) Signals important for high-level expression of foreign genes in Autographa californica nuclear polyhedrosis virus expression vectors. Virology 167, 56–71.PubMedCrossRefGoogle Scholar
  26. 26.
    Forstova, J., Krauzewicz, N., and Griffin, B. E. (1989) Expression of biologically active middle T antigen of polyoma virus from recombinant baculoviruses. Nucl. Acids Res. 17, 1427–1443.PubMedCrossRefGoogle Scholar
  27. 27.
    Sarvari, M., Csikos, G., Sass, M., Gal, P., Schumaker, V., and Zavodszky, P. (1990) Ecdysteroids increase the yield of recombinant protein produced in baculovirus insect cell expression system. Biochem. Biophys. Res. Commun. 167, 1154–1161.PubMedCrossRefGoogle Scholar
  28. 28.
    Pedraza, L., Owens, G. C., Green, L. A. D., and Salzer, J. L. (1990) The myelin-associated glycoproteins: membrane disposition, evidence of a novel disulfide link age between immmunoglobulin-like domains, and posttranslational palmitylation. J. CellBiol. 111, 2651–2661.CrossRefGoogle Scholar
  29. 29.
    vonHeijne, G. (1986) A new method for predicting signal sequence cleavage sites. Nucl. Acids Res. 14, 4683–4690.CrossRefGoogle Scholar
  30. 30.
    Gupta, S. K., Altares, M., Benoit, R., Riopelle, R. J., Dunn, R. J., and Richardson, P. M. (1992) Preparation and biological properties of native and recombinant cili ary neurotrophic factor. J. Neurobiol. 23, 481–490.PubMedCrossRefGoogle Scholar
  31. 31.
    Barbin, G., Manthorpe, M., and Varon, S. (1984) Purification of the chick eye ciliary neurotrophic factor. J. Neurochem. 43, 1468–1478.PubMedCrossRefGoogle Scholar
  32. 32.
    Kuroda, K., Geyer, H., Geyer, R., Doerfler, W., and Klenk, H.-D. (1990) The oligosaccharides of influenza virus hemagglutinin expressed in insect cells by a baculovirus vector. Virology 174, 418–429.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc, Totowa, NJ 1995

Authors and Affiliations

  • John Attia
    • 1
  • Sanjoy Gupta
    • 1
  • Robert J. Dunn
    • 1
  1. 1.Centre for Research in NeuroscienceMcGill University, Montreal General Hospital Research InstituteMontrealCanada

Personalised recommendations