Skip to main content

Analysis of Cysteine Residues and Disulfide Bonds

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 32))

Abstract

If cysteine and cystine are identified in proteins, they will require modification before they can be quantified. Oxidation to cysteic acid is still commonly used with postcolumn amino acid analyzers employing ion-exchange resins and ninhydrin detection. Oxidation with performic acid converts cysteine and cystine to cysteic acid and methionine to methionine sulfone. Tryptophan is also modified during the oxidation procedure by indole ring opening to form N-formylkynurenine and other products. Tyrosine may become halogenated if, for example, traces of bromide or chloride ions are present. The yield of cysteic acid is 90%, whereas 100% oxidation of Met to the sulfone is achieved.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Amons, R. (1987) Vapor phase modification of sulphydryl groups in proteins. FEBS Lett. 212, 68–72.

    Article  PubMed  CAS  Google Scholar 

  2. Jacobson, G. R., Schaffer, M. H., Stark, G. R., and Vanaman, T. C. (1973) Specific chemical cleavage in high yield at the amino peptide bonds of cysteine and cystine residues. J. Biol. Chem. 248, 6583.

    PubMed  CAS  Google Scholar 

  3. Doonan, S. and Fahmy, H. M. A. (1975) Specific cleavage of polypeptides at cysteine residues. Eur. J. Biochem. 36, 421–426.

    Article  Google Scholar 

  4. Noreau. J. and Drapeau, G. R. (1979) Isolation and properties of the protease from the wild type and mutant strains of Pseudomonas fragi. J. Bacteriol. 140, 911–916.

    PubMed  CAS  Google Scholar 

  5. Wilson, K. J., Fischer, S., and Yuan, P. M. (1989) Specific enzymatic cleavage at cystine/cysteine residues. The use of Asp-N Endoproteinase, in Methods in Protein Sequence Analysis (Wittman-Liebold, B., ed.), Springer-Verlag, Berlin, pp. 310–314.

    Google Scholar 

  6. Creighton, T. E. (1980) Counting integral numbers of amino acid residues per polypeptide chain. Nature 284,487–489.

    Article  PubMed  CAS  Google Scholar 

  7. Ellman, G. L. (1959) Tissue sulfhydrylgroups. Arch. Biochem. Biophys. 82,70–77.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, J. R. and Hartley, B. S. (1966) Location of disulfide bridges by diagonal paper electrophoresis. Biochem. J. 101, 214–228.

    PubMed  CAS  Google Scholar 

  9. Garvie, C. T., Straub, K. M., and Lynn, R. K., (1987) Quantitative liquid chromatographic determination of disulfide-containing peptide analogues of vasopressin with dual Hg/Au electrochemical detection.J. Chromatogr. 413, 43.

    Article  PubMed  CAS  Google Scholar 

  10. Aitken, A. (1989) Structural determination of covalently modified peptides by combined mass spectrometry and gas phase microsequencing, in Focus on Laboratory Methodology in Biochemistry, vol. 1., ch. 2, (Fini, C., Floridi, A., Finelli, V. N., and Wittman-Liebold, E., eds.), CRC, Boca Raton, FL, pp. 9–33.

    Google Scholar 

  11. Toren, P., Smith, D., Chance, R., and Hoffman, J. (1988) Determination of interchain crosslinkages in insulin B-chain dimers by fast atom bombardment mass spectrometry. Anal. Biochem. 169, 287–299.

    Article  PubMed  CAS  Google Scholar 

  12. Sun, Y. and Smith, D. L. (1988) Identification of disulfide-containing peptides by performic acid oxidation and mass spectrometry. Anal. Biochem. 172,130–138.

    Article  PubMed  CAS  Google Scholar 

  13. Morris, R. H. and Pucci, P. (1985) A new method for rapid assignment of S-S bridges in proteins. Biochem. Biophys. Res. Commun. 126, 1122–1128.

    Article  PubMed  CAS  Google Scholar 

  14. Villa, S., DeFazio, G., and Carosi, U. (1989) Cyanogen bromide cleavage at methionine residues of polypeptides containing disulfide bonds. Anal. Biochem. 177,161–164.

    Article  PubMed  CAS  Google Scholar 

  15. Stark, G. R. (1977) Cleavage at cysteine after cyanylation, in Methods in En-zymology, vol. 47 (Hirs, C. H. W. and Timasheff, S. N., eds.), Academic, New York, pp. 129–132.

    Google Scholar 

  16. Otieno, S. (1978) Generation of a free-amino group by Raney nickel after 2-nitro-5-thiocyanobenzoic acid cleavage at cysteine residues. Biochemistry 17, 5468–5474.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Aitken, A. (1994). Analysis of Cysteine Residues and Disulfide Bonds. In: Walker, J.M. (eds) Basic Protein and Peptide Protocols. Methods in Molecular Biology™, vol 32. Humana Press. https://doi.org/10.1385/0-89603-268-X:351

Download citation

  • DOI: https://doi.org/10.1385/0-89603-268-X:351

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-268-2

  • Online ISBN: 978-1-59259-519-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics