Skip to main content

Density Modification in X-Ray Crystallography

  • Protocol
Crystallographic Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 56))

Abstract

Crystallographic models are built by interpretation of an experimental image, the electron density map. This map is generally calculated from amplitudes measured experimentally and phases obtained with the multiple isomorphous replacement method. This method has poor precision, generating errors in the phases and therefore in the map. If the quality of the map is not sufficient to trace clearly a molecular model, it is necessary to improve the phases in order to obtain an interpretable map. Density modification methods achieve this by the application of physically meaningful constraints in real space, such as positivity, boundedness, electron density histograms, atomicity at high resolution, uniformity of solvent regions, continuity of the bio-polymer chain, and known noncrystallographic symmetry of the density distribution. To impose the physical constraints on an experimental map, an iterative algorithm has been proposed (1,2). It alternates real and reciprocal space operations, and merges gradually the physical constraints with the initial amplitudes and phases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It should be noted that a correct synthesis at finite resolution does not strictly have a constant level in the solvent region, owing to series termination errors and to partial ordering of the solvent molecules (12) This is clearly shown by electron density histogram analysis (7,13), and better modelization can be obtained, for example, by distance-to-boundary modulation of this density (14,15) However, this effect is much smaller than the noise introduced by phase error, and therefore, the assumption of a flat solvent region is a good first approximation

References

  1. Hoppe, W and Gassmann, J (1968) Phase correction, a new method to solve partially known structures. Acta Cryst B24, 97–107

    Google Scholar 

  2. Barrett, A. N. and Zwick, M (1971) A method for the extension and refinement of crystallographic protein phases utilising the Fast Fourier transform. Acta Cryst A27, 6–11.

    Google Scholar 

  3. Hoppe, W. and Gassmann, J (1964) Phasenbestimmung im Proteinen im Bereich von 2-Å-6bis 1 5-Å-Auflosung. Ber Bunsengen Phys Chem 68, 808–817

    CAS  Google Scholar 

  4. Bricogne, G (1974) Geometric sources of redundancy in intensity data and their use in phase determination. Acta Cryst A30, 395–405

    Google Scholar 

  5. Bhat, T N. and Blow, D M (1982) A density modification method for the improvement of poorly resolved protein electron density maps. Acta Cryst A38, 21–29.

    CAS  Google Scholar 

  6. Collms, D. M. (1982) Electron density images from imperfect data by iterative entropy maximisation. Nature 298, 49–51.

    Article  Google Scholar 

  7. Lumn, V Yu. (1988) Use of the information on electron density distribution in macromolecules. Acta Cryst A44, 144–150

    Google Scholar 

  8. Podjarny, A, Bhat, T, and Zwick, M (1987) Improving crystallographic macro-molecular images The real space approach. Ann Rev Biophys Biophys Chem 16, 351–373

    Article  CAS  Google Scholar 

  9. Lunin, V Yu (1993) Electron-density histograms and the phase problem. Acta Cryst D49, 90–99

    CAS  Google Scholar 

  10. Bricogne, G. (1993) Direct phase determination by entropy maximisation and like-lihood ranking. status report and perspectives. Acta Cryst D49, 37–60

    CAS  Google Scholar 

  11. Prince, E. (1993) Construction of maximum-entropy maps, and their use in phase determination and extension. Acta Cryst D49, 61–65

    CAS  Google Scholar 

  12. Badger, J. and Caspar, D L D (1991) Water structure in cubic insulin crystals. Proc Natl Acad Sci USA 88, 622–626.

    Article  CAS  Google Scholar 

  13. Zhang, K Y J and Main, P. (1990) Histogram matching as a new density modification technique for phase refinement and extension of protein molecules. Acta Cryst A46, 41–46

    CAS  Google Scholar 

  14. Cheng, X and Schoenborn, B. P. (1990) Hydration in protein crystals A neutron diffraction analysis of carbonmonoxymyoglobin. Acta Cryst. B46, 195–208.

    CAS  Google Scholar 

  15. Urzhumtsev, A G and Podjarny, A D (1995) On the problem of solvent modelling in macromolecular crystals using diffraction data. 1 The low resolution range. Joint ccpy ESF EACBM Newsletter 31, 12–16.

    Google Scholar 

  16. Arnold, E and Rossmann, M. G. (1986) Effect of errors, redundancy and solvent content in the molecular replacement procedure for the structure determination of biological macromolecules. Proc Natl Acad Sci USA 83, 5489–5493.

    Article  CAS  Google Scholar 

  17. Fenderson, F F, Herriott, J R, and Adman, E T (1990) An evaluation of selected density-modification methods for protein structure determination. J Appl Cryst 23, 115–131

    Article  CAS  Google Scholar 

  18. Hendrickson, W A, Klippenstein, G L., and Ward, K B. (1975) Tertiary structure of myohemerythrin at low resolution. Proc Natl Acad Sci USA 72, 2160–2164.

    Article  CAS  Google Scholar 

  19. Schevitz, R W, Podjarny, A. D, Zwick, M, Hughes, J. J, and Sigler, P B (1981) Improving and extending the phases of medium and low resolution macromolecular structure factors by density modification. Acta Cryst A37, 669–677

    CAS  Google Scholar 

  20. Simonov, V I (1976) Phase refinement by the method of modification and Fourier transformation of an approximate electron density distribution, in Crystallographic Computing Techniques (Ahmed, F. R., Huml, K, and Sedlacek, B., eds), Munskgaard, Copenhagen, pp 138–143

    Google Scholar 

  21. Zelwer, Ch and Ramanoara, E (1993) The use of a chain envelope combined with the IPD solvent flattening technique to refine the phases of the Met-RS structure. 3rd European Workshop on Crystallography of Biological Macromolecules, Como (Italy) May 24–28, 1993, M5

    Google Scholar 

  22. Wang, B C. (1985) Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol 115, 90–112.

    Article  CAS  Google Scholar 

  23. Podjarny, A D, Rees, B, Thierry, J. C, Cavarelli, J, Jésior, J C, Roth, M., Lewitt-Bentley, A., Kahn, R., Lorber, B, Ebel, J. P., Giegé R, and Moras, D (1987) Yeast tRNAAsP-Aspartyl tRNA synthetase complex Low resolution crystal structure. J Biomol Struct and Dynamics 5, 187–198

    CAS  Google Scholar 

  24. Lunin, V Yu, Lunina, N L, Petrova, T. E., Vernoslova, E A., Urzhumtsev, A G, and Podjarny, A D. On the Ab-Initio solution of the phase problem for macromolecules at very low resolution. the few atoms model method. Acta Cryst D, in press.

    Google Scholar 

  25. Jones, T A. (1992) a, yaap, asap, @#*? A set of averaging programs. Collaborative Computational Project Number 4 Proceedings of the Study Weekend “Molecular replacement”, 91–105.

    Google Scholar 

  26. Turk, D. (1992) Weiterenwicklung eines Programs fur Molekulgraphik und Elektronendichte-Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklarungen PhD Theses, University of Munchen

    Google Scholar 

  27. Vellieux, F M. D., Hajdu, J, Verlinde, C L. M. J, Groendijk, H, Read, R J., Greenhough, T J., Campbell, J. W, Kalk, K H, Littlechild, J H, Watson, H. C, and Hol, W. G. J (1993) Structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei determined from Laue data. Proc Natl Acad Sci USA 90, 2355–2359.

    Article  CAS  Google Scholar 

  28. Tête-Favier, F., Rondeau, J-M, Podjarny, A, and Moras, D. (1993) Structure determination of aldose reductase joys and traps of local symmetry averaging. Acta Cryst D49, 246–256

    Google Scholar 

  29. Rossmann, M G and Blow, D M. (1962) The detection of sub-units within the crystallographic asymmetric unit. Acta Cryst. 15, 24–31.

    Article  CAS  Google Scholar 

  30. Johnson, J. E. (1978) Averaging of electron density maps. Acta Cryst B34, 576–577

    Google Scholar 

  31. Rossmann, M G, Blow, D. M., Harding, M M, and Coller, E (1964) The relative positions of Independent molecules within the same asymmetric unit. Acta Cryst 17, 338–342

    Article  Google Scholar 

  32. Jones, E. Y, Walker, N. P. C, and Stuart, D (1991) Methodology employed for the structure determination of tumour necrosis factor, a case of high non-crystallographic symmetry. Acta Cryst A47, 753–770

    CAS  Google Scholar 

  33. Rees, B (1990) RMOL program and manual. Internal report, IBMC, Strasbourg, France

    Google Scholar 

  34. Blow, D M. and Crick, F. H C (1959) The treatment of errors in the isomorphous replacement method. Acta Cryst 12, 794–802

    Article  CAS  Google Scholar 

  35. Urzhumtsev, A G. and Lunin, V Yu., unpublished

    Google Scholar 

  36. Sim, G A (1959) The distribution of phase angles for structures containing heavy atoms II A modification of the normal heavy atom method for noncentrosymmetrical structures. Acta Cryst 12, 813–815

    Article  CAS  Google Scholar 

  37. Read, R J. (1986) Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Cryst A42, 140–149

    CAS  Google Scholar 

  38. Srinivasan, R (1966) Weighting functions for use in the early stages of structure analysts when a part of the structure is known. Acta Cryst 20, 143–144

    Article  CAS  Google Scholar 

  39. Rice, D W (1981) The use of phase combination in the refinement of phosphoglycerate kinase at 2 5 Å resolution. Acta Cryst A37, 491–500

    CAS  Google Scholar 

  40. Stuart, D and Artymiuk, P (1985) The use of phase combination in crystallographic refinement the choice of amplitude coefficients in combined syntheses. Acta Cryst A40, 713–716.

    Google Scholar 

  41. Zelwer, C (1988) The isomorphous pseudo-derivative technique for phase refinement by density modification. Acta Cryst A44, 485–495.

    CAS  Google Scholar 

  42. Shtono, M. and Woolfson, M. M (1992) Direct-space methods in phase extension and phase determination I Low-density elimination. Acta Cryst A48, 451–456

    Google Scholar 

  43. Cannillo, E., Oberti, R, and Ungaretti, L (1983) Phase extension and refinement by density modification in protein crystallography. Acta Cryst A39, 68–74

    Google Scholar 

  44. Argos, P., Ford, G C, and Rossmann, M G (1975) An application of the molecular replacement technique in direct space to a known protein structure. Acta Cryst A31, 499–506

    CAS  Google Scholar 

  45. Rayment, I. (1983) Molecular replacement method at low resolution optimum strategy and intrinsic limitations as determined by calculations on icosahedric virus model. Acta Cryst A39, 102–116

    CAS  Google Scholar 

  46. Rossmann, M G. (1990) The molecular replacement method. Acta Cryst A46, 73–82.

    CAS  Google Scholar 

  47. Podjarny, A. D., Schevitz, R. W, and Sigler, P. B. (1981) Phasing low-resolution macromolecular structure factors by matricial direct methods. Acta Cryst A37, 662–668

    CAS  Google Scholar 

  48. Urzhumtsev, A. G (1991) Low-resolution phases: influence on SIR syntheses and retrieval with double-step filtration. Acta Cryst A47, 794–801

    CAS  Google Scholar 

  49. Podjarny, A D and Yonath, A (1977) Use of matrix direct methods for low-resolution phase extension for tRNA. Acta Cryst A33, 655–661

    CAS  Google Scholar 

  50. Luzzati, V, Mariani, P., and Delacroix, H (1988) Cubic phases of lipid-containing system Structure analysis and biological implications. J Mol Biol 204, 165–189

    Article  Google Scholar 

  51. Harrison, R W. (1988) Histogram specification as a method of density modification. J Appl Cryst 21, 949–952.

    Article  CAS  Google Scholar 

  52. Collins, D M, Brice, M D., La Cour, T F M., and Legg, M G (1976) Fourier phase refinement and extension by modification of electron density maps, in Craystallographic Computing Techniques (Ahmed, F. R, Huml, F, and Sedlacek, B, eds), Munskgaard, Copenhagen, pp 330–335

    Google Scholar 

  53. Urzhumtsev, A G (1985) The use of local averaging to analyse macromolecular images in the electron density maps. Preprint, USSR Academy of Sciences, Pushchino, USSR

    Google Scholar 

  54. Wilson, C and Agard, D A (1993) PRISM. Automated crystallographic phase refinement by iterative skeletonization. Acta Cryst A49, 97–104.

    CAS  Google Scholar 

  55. Baker, D., Bystroff, C, Fletterick, R J, and Agard, D A (1993) PRISM Topologically constrained phase refinement for macromolecular crystallography. Acta Cryst D49, 429–439

    CAS  Google Scholar 

  56. Bystroff, C, Baker, D, Fletterick, R. J, and Agard, D A (1993) PRISM Application to the solution of two protein structures. Acta Cryst D49, 440–448.

    CAS  Google Scholar 

  57. Cura, V, Podjarny, A. D., and Moras, D (1992) Heavy atom refinement against solvent-flattened phases. Acta Cryst A48, 756–764.

    CAS  Google Scholar 

  58. Rould, M A, Perona, J T., Soll, D, and Steitz, T A. (1989) Structure of E Coli glutaminyl tRNA synthetase complexed with tRNAGln and ATP at 2 8 Å resolution. Science 246, 1135–1142

    Article  CAS  Google Scholar 

  59. Ruff, M., Krishnaswamy, S, Boeglin, M, Polterszman, A, Mitschler, A, Podjarny, A, Rees, B, Thierry, J C, and Moras, D (1991) Class II aminoacyl transfer synthetases crystal structure of yeast aspartyl tRNA synthetase complexed with tRNAAsp. Science 252, 1682–1689

    Article  CAS  Google Scholar 

  60. Rondeau, J M, Tête-Favier, F, Podjarny, A D, Reymann, J M, Barth, P, Biellmann, J F, and Moras, D. (1992) Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature 355, 469–472

    Article  CAS  Google Scholar 

  61. Sayre, D and Toupin, R. (1975) Major increase in speed of least-squares phase refinement. Acta Cryst A31, S20.

    Google Scholar 

  62. Navaza, J, Castellano, E E, and Tsoucaris, G (1983) Constrained density modifications by variational techniques. Acta Cryst A39, 622–631

    CAS  Google Scholar 

  63. Lunin, V Yu (1985) Use of Fast Differentiation algorithm for phase refinement in protein crystallography. Acta Cryst A41, 551–556

    CAS  Google Scholar 

  64. Navaza, J (1986) The use of non-local constraints in maximum-entropy electron density reconstruction. Acta Cryst A42, 212–223

    CAS  Google Scholar 

  65. Zhang, K. Y J. (1993) SQUASH-combining constraints for macromolecular phase refinement and extension. Acta Cryst D49, 213–222

    CAS  Google Scholar 

  66. Cowtan, K D and Main, P. (1993) Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Cryst D49, 148–157

    CAS  Google Scholar 

  67. Lunm, V. Yu., Urzhumtsev, A G, and Skovoroda, T P (1990) Direct low-resolution phasing from electron-density histograms in protein crystallography. Acta Cryst A46, 540–544

    Google Scholar 

  68. Lunm, V Yu and Vernoslova, E A (1991) Frequency-restrained structure-factor refinement. II. Comparison of methods. Acta Cryst A47, 238–243

    Google Scholar 

  69. CCP4 (1979) The SERC (UK) Collaborative Computational Project Number 4, a suite of programs for protein crystallography, distributed from Daresbury Laboratory, Warrington WA4 4AD, UK

    Google Scholar 

  70. Rossman, M. G, McKenna, R., Tong, L., Xia, D, Dai, J, Wu, H, Choi, H-K, and Lynch, R E (1992) Molecular replacement real-space averaging. J Appl Cryst 25, 166–180

    Article  Google Scholar 

  71. Lunina, N. L. (1992) DSF/DMP Internal report, IMPB, Pushchino, Moscow Region, Russia

    Google Scholar 

  72. Bricogne, G. (1976) Methods and programs for direct space exploitation of geometric redundancies. Acta Cryst A32, 832–847

    CAS  Google Scholar 

  73. Rees, B., unpublished.

    Google Scholar 

  74. Leslie, A G W (1987) A reciprocal-space method for calculating a molecular envelope using the algorothm of B C Wang. Acta Cryst A43, 134–136

    CAS  Google Scholar 

  75. Urzhumtsev, A G., Lunin, V Yu, and Luzyanina, T B. (1989) Bounding a molecule in a noisy synthesis. Acta Cryst A45, 34–39

    CAS  Google Scholar 

  76. Reynolds, B, Remington, S. J, Weaver, L H, Fisher, R. G., Anderson, W F, Ammon, H. L, and Matthews, B W (1985) Structure of a serine protease from rat mast cells determined from twinned crystals by isomorphous and molecular replacement. Acta Cryst B41, 139–147

    CAS  Google Scholar 

  77. Rees, B, Bilwes, A, Samama, J-P, and Moras, D (1990) Cardiotoxin VII4 from Naja mossambica The refined crystal structure. J Mol Biol 214, 281–297

    Article  CAS  Google Scholar 

  78. Rees, D. C (1983) Largest likely values for R-factors calculated after phase refinement by non-crystallographic symmetry averaging. Acta Cryst A39, 916–920

    CAS  Google Scholar 

  79. Brunger, A (1992) Free R value a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–474

    Article  CAS  Google Scholar 

  80. Brunger, A (1993) Assessment of phase accuracy by cross validation, the free R value Methods and applications. Acta Cryst D49, 24–36

    CAS  Google Scholar 

  81. Artymiuk, P J and Blake, C C. F (1981) Refinement of human lysozyme at 1 5Å resolution Analysts of non-bonded and hydrogen-bond Interactions. J Mol Biol 152, 737–762.

    Article  CAS  Google Scholar 

  82. Bhat, T N and Cohen, G H (1984) Omit-map. an electron density map suttable for the examination of errors in a macromolecular model. J Appl Cryst 17, 244–248

    Article  CAS  Google Scholar 

  83. Lunm, V Yu (1992) Personal communication

    Google Scholar 

  84. Baker, D, Krukowski, A E, and Agard, D A (1993) Uniqueness and ab initio phase problem in macromolecular crystallography. Acta Cryst D49, 186–192.

    CAS  Google Scholar 

  85. Tulinsky, A. (1985) Phase refinement/extension by density modification. Methods Enzymol 115, 77–89

    Article  CAS  Google Scholar 

  86. Podjarny, A D (1989) Improving protein phases in real space. Collaborative Computational Project Number 4 Proceedings of the Study Weekend “Improwng Protein Phases”, pp 65–72

    Google Scholar 

  87. Dodson, E. (1989) Improving electron density maps by density modification. Collaborative Computational Project Number 4 Proceedings of the Study Weekend “Improving Protein Phases“, pp 73–87

    Google Scholar 

  88. Vellieux, F M D, Groendijk, H, Huintema, F., Swarte, MBA, Drenth, J, and Hol, W. G. J. (1989) The use of solvent-flattening procedures in the crystal structure determination of quinoprotein methylamine dehydrogenase. Collaborative Computational Project Number 4 Proceedings of the Study Weekend “Improving Protein Phases“, pp 88–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Humana Press Inc.

About this protocol

Cite this protocol

Podjarny, A.D., Rees, B., Urzhumtsev, A.G. (1996). Density Modification in X-Ray Crystallography. In: Jones, C., Mulloy, B., Sanderson, M.R. (eds) Crystallographic Methods and Protocols. Methods in Molecular Biology™, vol 56. Humana Press. https://doi.org/10.1385/0-89603-259-0:205

Download citation

  • DOI: https://doi.org/10.1385/0-89603-259-0:205

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-259-0

  • Online ISBN: 978-1-59259-543-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics