Use of Multiple-Wavelength Anomalous Diffraction Measurements in Ab Initio Phase Determination for Macromolecular Structures

  • H. M. Krishna Murthy
Part of the Methods in Molecular Biology™ book series (MIMB, volume 56)

Abstract

The determination of three-dimensional structures of macromolecules in the crystalline state depends on the acquisition and processing of diffraction data generated by the interaction of X-rays with the crystals of the macromolecule under investigation. In general, there are two points at which the process languishes because of lack of necessary material or data. The first is the initial crystallization of the macromolecule; although work is being done to understand the principles involved (1), the crystallization of a macromolecule usually depends heavily on empirical reasoning (2). The second bottleneck is acquisition of phases. Each diffraction maximum has associated with it both an amplitude and a phase. The phases are not directly measurable in a typical diffraction experiment and must therefore be estimated by indirect means. By far the most widely used method for the derivation of phases is that of Multiple Isomorphous Replacement (MIR). The MIR method depends on the making of isomorphous derivative crystals of the macromolecule under investigation, and estimation of phases from the differences between the amplitudes of native and derivative diffraction maxima (3). At least two isomorphous derivatives are required for reliable phase determination, although in favorable cases, anomalous diffraction information from a derivative may be used as a second pseudoderivative.

Keywords

Crystallization Phosphorus Attenuation Cysteine Methionine 

References

  1. 1.
    Durbin, S. D. and Feher, G (1990) Studies of crystal growth mechanisms of proteins by electron microscopy. J. Mol. Biol 212, 763–774CrossRefGoogle Scholar
  2. 2.
    McPherson, A (1982) Preparation and Analysis of Protein Crystals Wiley, New YorkGoogle Scholar
  3. 3.
    Blundell, T. L. and Johnson, L. N (1976) Protein Crystallography Academic, London.Google Scholar
  4. 4.
    Smgh, A. K. and Ramaseshan, S. (1968) The use of neutron scattering in crystal structure analysts. I. Non-centrosymmetric structures. Acta Cryst B24, 35–39.Google Scholar
  5. 5.
    Karle, J. (1980) Some developments in anomalous dispersion for the structural investigation of macromolecular systems in biology. Int. J Quant. Chem Quant Biol Symp 7, 357–367Google Scholar
  6. 6.
    Kahn, R., Fourme, R, Bosshard, R., Chiadmi, M., Rister, J L., Dideberg, O, and Wery, J P. (1985) Crystal structure study of Opsanus tan parvalbumin by multi-wavelength anomalous diffraction. FEBS Lett. 179, 133–137.CrossRefGoogle Scholar
  7. 7.
    Phizackerly, R. P., Cork, C. W., and Merritt, E A. (1986) An area detector data acquisition system for protein crystallography using multiple energy anomalous dispersion techniques. Nucl Instrum. Methods Phys Res A246, 579–595.Google Scholar
  8. 8.
    James, R. W (1982) The Optical Principles of the Diffraction of X-rays Ox Bow Press, Woodbridge, CTGoogle Scholar
  9. 9.
    Krishna Murthy, H. M., Hendrickson, W. A., Orme-Johnson, W. H., Merritt, E. A., and Phizackersly, R. P (1988) Crystal structure of Clostridium acidi-urici ferredoxin at 5-Å resolution based on measurements of anomalous X-ray scattering at multiple wavelengths. J Biol Chem. 263, 18,430–18,436.Google Scholar
  10. 10.
    Ramaseshan, S. (1964) The use of anomalous scattering in crystal structure analysis, in Advanced Methods En Crystallography (Ramachandran, G. N., ed.), Academic, London, pp. 67–95Google Scholar
  11. 11.
    Fourme, R. and Hendrickson, W. A. (1990) Analysis of macromolecular structures by the method of multiwavelength anomalous diffraction, in Synchrotron Radiation and Biophysics (Hasnain, S. S., ed.), Ellis Harwood, Chichester, pp. 156–175Google Scholar
  12. 12.
    Hendrickson, W A. (1991) Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 254, 51–58CrossRefGoogle Scholar
  13. 13.
    Hendrickson, W. A., Smith, J. L., and Sheriff, S. (1985) Direct phase determination based on anomalous scattering, in Methods in Enzymol, vol. 115 (Wyckoff, H. W., Hirs, C. H. W., and Timasheff, S. N., eds.), Academic, New York, pp 41–55Google Scholar
  14. 14.
    Hendrickson, W. A. (1985) Analysis of protein structure from diffraction measurements at multiple wavelengths. Trans Am Cryst Assoc 21, 11–21Google Scholar
  15. 15.
    Cromer, D. T. and Waber, J. T. (1974) Atomic scattering factors for X-rays, in International Tables for X-ray Crystallography, vol. IV (Lonsdale, K. D., ed.), Reidel, Dordrecht, Holland, pp. 71–147.Google Scholar
  16. 16.
    McPherson, A. (1985) Crystallization of macromolecules: General principles, in Mets in Enzymol, vol. 114 (Wyckoff, H. W., Hirs, C. H. W., and Timasheff, S. N., eds), Academic, New York, pp. 112–120Google Scholar
  17. 17.
    Hoppe, W. and Jakubowski, V (1975) The determination of phases of erythrocruorin using the two wavelength method with iron as anomalous scatterer, in Anomalous Scattering (Ramaseshan, S. and Abrahams, S. C., eds.), Academic, New York, pp. 437–461Google Scholar
  18. 18.
    Hendrickson, W. A., Troup, J. M., Swepston, P. N., and Zdanski, G. (1986) Structure of D-selenolanthionine determined directly from multiwavelength anomalous diffraction of bremstrahlung. Abstract Amer Cryst. Assoc Ser. 2, 14, 48.Google Scholar
  19. 19.
    DeTitta, G. T, Swenson, D. C, Han, F., and Pangborn, W. A (1990) Preliminary results with a dual target sealed X-ray tube as a tool for anomalous scattering at multiple wavelengths. Abs # COl, Am. Cryst. Assoc. Meeting, April 1990.Google Scholar
  20. 20.
    Xuong, N-H, Sullivan, D, Nielson, C, Dai, X, and Ashford, V (1990) A multi-wavelength diffractometer using the L emission lines of a heavy metal Abstract # C02, Am Cryst Assn Meeting, April 1990.Google Scholar
  21. 21.
    Greenhough, T J and Helliwell, J R. (1983) The uses of synchrotron X-radiation in the crystallography of molecular biology. Prog Biophys Mol Biol 41, 67–123CrossRefGoogle Scholar
  22. 22.
    Fourme, R and Kahn, R (1985) A rotation camera used with a synchrotron radiation source in, Methods in Enzymol, vol 114, (Wyckoff, H W., Hirs, C H W, and Ttmasheff, S N., eds.), Academic, New York, pp 281–299Google Scholar
  23. 23.
    Moffat, K (1989) Time resolved macromolecular crystallography. Ann Rev Biophys Biophys Chem 18, 309–332CrossRefGoogle Scholar
  24. 24.
    Mills, D M (1984) Time-resolution experiments using X-ray synchrotron radiation. Phys Today 37(4), 22–30CrossRefGoogle Scholar
  25. 25.
    Gruner, S. M (1987) Time-resolved X-ray diffraction of biological materials. Science 238, 305–312CrossRefGoogle Scholar
  26. 26.
    Hendrickson, W A., Pahler, A, Smith, J. L, Satow, Y, Merritt, E A., and Phizackerly, R P (1989) Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci 86, 2190–2194.CrossRefGoogle Scholar
  27. 27.
    Wets, W I, Kahn, R, Fourme, K, Drickamer, K, and Hendrickson, W A (1991) Structure of the calcium-dependent domain from a rat mannose binding protein determined by MAD phasing. Science 254, 1608–1615CrossRefGoogle Scholar
  28. 28.
    Rossmann, M G (1990) The molecular replacement method. Acta Cryst A46, 73–82Google Scholar
  29. 29.
    Hendrickson, W A., Horton, J R., Krishna Murthy, H M., Pahler, A, and Smith, J L (1990) Multiwavelength anomalous diffraction as a direct phasing vehicle in macromolecular crystallography, in Synchrotron Radiation in Biology (Sweet, R. W, ed), Plenum, New York, pp 317–324.Google Scholar
  30. 30.
    Hendrickson, W A, Horton, J R, and LeMaster, D. M (1990) Selenomethionine proteins produced for analysts by multiwavelength anomalous diffraction (MAD) a vehicle for direct determination of three-dimensional structure. EMBO J 9, 1665–1672Google Scholar
  31. 31.
    Graves, B. J, Hatada, M. H, Hendrickson, W A, Miller, J K, Madison, V S, and Satow, Y. (1990) Structure of interleukin 1 α at 2 7-Å resolution. Biochemistry 29, 2679–2684CrossRefGoogle Scholar
  32. 32.
    Yang, W, Hendrickson, W. A, Crouch, R. J, and Satow, Y (1990) Structure of ribonuclease H phased at 2 Å by MAD analysts of the selenomethionine protein Science 249, 1398–1403CrossRefGoogle Scholar
  33. 32a.
    Korszun, Z R. (1987) The tertiary structure of azurin from pseudomonas denitrificans as determined by Cu resonant diffraction using synchrotron radiation J Mel Biol 196, 413–419CrossRefGoogle Scholar
  34. 32b.
    Ramakrtshnan, V, Finch, J T, Graziano, V., Lee, P. L., and Sweet, R. M (1993) Crystal structure of globular domain of histone H5 and its implications for nucleo-Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219–223.CrossRefGoogle Scholar
  35. 33.
    Ogata, C, Hendrickson, W. A., Gao, X., Satow, Y, and Amemia, Y., Structure of 23 chromomycin DNA complex based on bromine MAD data detected with imaging plates, in preparationGoogle Scholar
  36. 34.
    Cromer, D. T. and Lieberman, D (1970) Relativistic calculation of anomalous scattering factors for X-rays. J Chem Phys. 53, 1891–1898CrossRefGoogle Scholar
  37. 35.
    Elder, M (1985) Photographic science and microdensitometry in X-ray diffraction data collection, in Mets in Enzymol, vol. 114 (Wyckoff, H W., Hirs, C. H W., and Timasheff, S N, eds), Academic, New York, pp 199–210Google Scholar
  38. 36.
    Guss, J M., Merritt, E A., Phizackerly, R. P., Hedman, B, Murata, M., Hodgson, K. O., and Freeman, H. C. (1988) Phase determination by multi-wavelength X-ray diffraction: Crystal structure of a basic “blue” copper protein from cucumbers. Science 241, 806–811.CrossRefGoogle Scholar
  39. 37.
    Arndt, U W (1985) Television area X-ray detectors, in Methods in Enzymology, vol. 114 (Wyckoff, H W., Hirs, C. H. W., and Timasheff, S. N., eds.), Academic, New York, pp 472–485Google Scholar
  40. 38.
    Weissman, L. (1982) Strategies for extraction of isomorphous and anomalous signals, in Computational Crystallography, Sayre, D, ed, Clarendon, Oxford, pp 56–64.Google Scholar
  41. 39.
    Hendrickson, W. A. and Teeter, M. M. (1981) Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature 290, 107–113.CrossRefGoogle Scholar
  42. 40.
    Karle, J. (1984) The relative scaling of multiple-wavelength anomalous dispersion data. Acta. Gyst A40, 1–4.Google Scholar
  43. 41.
    Lonsdale, K. D (ed) (1985) International Tables for X-ray Crystallography, vol III Reidel Publishing Company, Dordrecht, HollandGoogle Scholar
  44. 42.
    Brown, G. S (1980) Extended X-ray absorption fine structure in condensed materials, in Synchrotron Radiation Research (Winnick, H. and Doniach, S, eds), Plenum, New York, pp. 387–400.Google Scholar
  45. 43.
    Strohr, J. (1980) EXAFS and surface EXAFS: Principles, analysts and applications. SSRL report 80107, SSRL, Stanford University, CAGoogle Scholar
  46. 44.
    Cusatts, C. and Hart, M (1975) Dispersion correction measurements by X-ray interferometry, in Anomalous Scattering (Ramaseshan, S. and Abrahams, S C., eds.), Academic, New York, pp 57–68Google Scholar
  47. 45.
    Phillips, J. C. and Hodgson, K. O (1980) The use of anomalous scattering effects to phase diffraction patterns from macromolecules. Acta. Cryst. A36, 856–864.Google Scholar
  48. 46.
    Narayan, R. and Ramaseshan, S (1981) Optimum choice of wavelengths in the anomalous scattering technique with synchrotron radiation. Acta Cryst A37, 636–641Google Scholar
  49. 47.
    Arndt, U. W., Greenhough, T. J., Helliwell, J. R., Howard, J. A. K, Rule, S. A., and Thompson, A. W. (1982) Optimized anomalous dispersion in crystallography: a synchrotron X-ray polychromatic simultaneous method. Nature 298, 835–838.CrossRefGoogle Scholar
  50. 48.
    Hope, H. (1988) Cryocrystallography of Biological Macromolecules. a Generally Applicable Method, Acta Cryst B44, 22–26.Google Scholar
  51. (Wyckoff, H. W., Hirs, C. H W., and Timasheff, S N., eds.), Academic, New York, pp. 112–117.Google Scholar
  52. 50.
    Wang, B-C (1985) Resolution of phase ambiguity in macromolecular crystallography, in Methods in Enzymology, vol 115, (Wyckoff, H. W., Hirs, C H W, and Timasheff, S. N., eds), Academic, New York, pp. 90–112Google Scholar
  53. 51.
    North, A C T, Phillips, D C, and Mathews, F. S. (1968) A Semi-empirical method of absorption correction, Acta Cryst A24, 351–359.Google Scholar
  54. 52.
    Howard, A J, Nielson, C, and Xuong, N. H. (1985) Software for a diffractometer with a multiwire area detector, in Methods in Enzymology, vol. 114 (Wyckoff, H. W., Hirs, C. H. W., and Timasheff, S. N., eds.), Academic, New York, pp 452–472.Google Scholar
  55. 53.
    Templeton, L. K. and Templeton, D H (1988) Biaxial tensors for anomalous scattering of X-rays in Selenolanthionine, Acta. Cryst. A44, 1045–1051Google Scholar
  56. 54.
    Sowadski, J M, Foster, B. A., and Wyckoff, H. W. (1981) Structure of alkaline phosphatase with zinc/magnesium cobalt or cadmium in the functional metal sites. J Mol Biol 150, 245–272CrossRefGoogle Scholar
  57. 55.
    Hendrickson, W. A. (1976) Radiation Damage in Crystallography. J. Mol Biol 106, 889–893.CrossRefGoogle Scholar
  58. 56.
    Fletterick, R J and Sygusch, J (1985) Measuring X-ray diffraction data from large proteins with X-ray diffractometry, in Methods in Enzymology, vol 114, (Wyckoff, H W., Hirs, C H W, and Timasheff, S N, eds), Academic, New York, pp. 386–397.Google Scholar
  59. 57.
    Germain, G., Main, P., and Woolfson, M. M. (1971) The application of phase relationships to complex structures III The optimum use of phase relationships. Acta Cryst A27, 368–376Google Scholar
  60. 58.
    Pahler, A., Smith, J. L., and Hendrickson, W. A. (1990) A probability representation for phase information from multiple wavelength anomalous dispersion. Acta Cryst A46, 537–540Google Scholar
  61. 59.
    Chiadmi, M, Kahn, R, De La Fortelle, E, and Fourme, R (1993) Derivation by stastistical methods of phase information from multiple-wavelength anomalous diffraction data Basic questions, “best” electron-density map, implementation and tests. Acta Cryst D49,522–529.Google Scholar
  62. 60.
    Hendrickson, W. A. and Lattman, E. E. (1970) Representation of phase probability distributions for simplified combination of independent phase information. Acta Cryst B26, 136–143Google Scholar
  63. 61.
    Jones, T A (1985) Interactive computer graphics. FRODO, in Methods in Enzymology, vol. 115 (Wyckoff, H W, Hirs, C. H W, and Timasheff, S. N., eds.), Academic, New York, pp. 157–171.Google Scholar
  64. 62.
    Richardson, J. S. and Richardson, D. C. (1985) Interpretation of electron density maps, in Methods in Enzymology, vol. 115 (Wyckoff, H. W., Hirs, C. H. W., and Timasheff, S. N, eds.), Academic, New York, pp. 179–206.Google Scholar
  65. 63.
    Hendrickson, W. A (1985) Stereochemically restrained refinement of macromolecular structures, in Methods in Enzymology, vol. 115 (Wyckoff, H. W., Him, C. H. W., and Timasheff, S N., eds.), Academic, New York, pp. 252–271.Google Scholar
  66. 64.
    Deisenhofer, J., Remington, S. J., and Steigemann, W. (1985) Experience With Various Techniques for The Refinement of Protein Structures, in Methods in Enzymology, vol. 115 (Wyckoff, H. W., Hirs, C. H. W., and Timasheff, S. N, eds.), Academic, New York, pp. 303–324.Google Scholar
  67. 65.
    Hamilton, D. P. (1990) Advanced photons. Science 249, 21CrossRefGoogle Scholar
  68. 66.
    Sietman, R. (1990) Doris gets a face-lift. Science 249, 26.CrossRefGoogle Scholar
  69. 67.
    Staudenmann, J.-L., Hendrickson, W. A., and Abramowitz, R. (1989) The synchrotron resource of the Howard Hughes Medical Institute. Rev Sci Instrum 60, 1939–1942.CrossRefGoogle Scholar
  70. 68.
    Boulm, C, Buldt, G., Dauvergne, F., Gabriel, A., Goerigk, G, Munk, B., and Stuhrmann, H. B. (1990) Anomalous scattering in membrane studies, in Synchrotron Radiation in Biology (Sweet, R. W., ed.), Academic, New York, pp 83–92Google Scholar
  71. 69.
    Lehman, M. S., Muller, H H., and Stuhrmann, H B (1993) Protein single-crystal diffraction with 5 Å synchrotron X-rays at the sulphur K-absorption edge. Acta Cryst. D49, 308–310.Google Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • H. M. Krishna Murthy
    • 1
  1. 1.Fels Institute for Cancer Research and Molecular BiologyTemple University School of MedicinePhiladelphia

Personalised recommendations