Skip to main content

Footprinting with Exonuclease III

  • Protocol
DNA-Protein Interactions

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 30))

Abstract

Within the last few years footprinting techniques have become increasingly important in the study of protein-nucleic acid interactions. This is partly the result of a fast-growing number of known nucleic acid binding proteins but also because of an increase in the available probes that can be chosen in order to tackle a specific problem. There are two major groups of probes-the chemical probes and the enzymatic probes. These enzymatic probes, such as DNase I or exonuclease III, have the advantage of acting specifically at the DNA. Chemical probes are often less specific and react also with the protein. This can disturb the correct interaction of protein and DNA. For the study of very fragile protein-DNA complexes, therefore, enzymatic probes are often preferable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Kow, Y. W. (1989) Mechanism of action of Escherichia co11 Exonuclease III. Biochemistry 28,3280–3287.

    Article  PubMed  CAS  Google Scholar 

References

  1. Rogers, S. G. and Weiss, B. (1980) Exonuclease III of Escherichia coli K-12, an AP endonuclease. Meth. Enzymol. 65,201–211.

    Article  PubMed  CAS  Google Scholar 

  2. Shalloway, D., Kleinberger, T., and Livingston, D. M. (1980) Mapping of SV 40 DNA replication origin region binding sites for the SV 40 DNA replication antigen by protection against Exonuclease III digestion, Cell 20,411–422.

    Article  PubMed  CAS  Google Scholar 

  3. Metzger, W., Schickor, P, and Heumann, H (1989) A cinematographic view of Eschenchia coli RNA polymerase translocation. EMBO J. 8,2745–2754

    PubMed  CAS  Google Scholar 

  4. Pavco, P. A and Steege, D. A. (1990) Elongatton by Escherichia coli RNA polymerase is blocked in vitro by a site specific DNA binding protein. J. Biol. Chem. 265,9960–9969.

    PubMed  CAS  Google Scholar 

  5. Wu, C (1985) An exonuclease protection assay reveals heat-shock element and TATA box binding proteins in crude nuclear extracts. Nature, 317,84–87.

    Article  PubMed  CAS  Google Scholar 

  6. Loh, T. P., Sievert, L. L., and Scott, R. W. (1990) Evidence for a stem cellspecific repressor of Moloney murine leukemia virus expression in embryonic carcinoma cells. Mol. Cell. Biol. 10,4045–4057

    PubMed  CAS  Google Scholar 

  7. Carnevali, F., La Porta, C., Ilardi, V., and Beccari, E. (1989) Nuclear factors specifically bind to upstream sequences of a Xenopus laevis ribosomal protein gene promoter. Nucleic Acids Res. 17,8171–8184.

    Article  PubMed  CAS  Google Scholar 

  8. Fried, M. and Crothers, D M. (1981) Equilibria and kinetics of lac repressoroperator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res. 9,6505–6525.

    Article  PubMed  CAS  Google Scholar 

  9. Heumann, H., Metzger, W., and Niehorster, M. (1986) Visualization of mtermediary transcription states in the complex between Escherichia coli DNA dependent RNA polymerases and a promoter-carrying DNA fragment using the gel retardation method. Eur. J. Biochem. 158, 575–579.

    Article  PubMed  CAS  Google Scholar 

  10. Straney, D. C. and Crothers, D. M. (1987) A stressed intermediate in the formation of stably initiated RNA chains at the Escherichiu coli lac UV 5 promoter. J. Mol. Biol. 193,267–278.

    Article  PubMed  CAS  Google Scholar 

  11. Straney, D. C. and Crothers, D M (1987) Comparison of the open complexes formed by RNA polymerase at the Escherichia coli lac UV 5 promoter. J. Mol. Biol. 193,279–292.

    Article  PubMed  CAS  Google Scholar 

  12. Gaur, N. K., Oppenheim, J., and Smith, I. (1991) The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes for a DNA-binding protein, J. Bact. 173,678–686.

    PubMed  CAS  Google Scholar 

  13. Owen, R. D., Bortner, D. M., and Ostrowski, M. C. (1990) rus oncogene activatton of a VL30 transcriptional element is linked to transformation. Mol. Cell. Biol. 10, 1–9.

    PubMed  CAS  Google Scholar 

  14. Wilkison, W. O., Min, H. Y, Claffey, K. P., Satterberg, B. L., and Spiegelman, B. M. (1990) Control of the adipisin gene in adipocyte differentiatton. J. Biol. Chem. 265,477–482.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc.

About this protocol

Cite this protocol

Metzger, W., Heumann, H. (1994). Footprinting with Exonuclease III. In: Geoff Kneale, G. (eds) DNA-Protein Interactions. Methods in Molecular Biology™, vol 30. Humana Press. https://doi.org/10.1385/0-89603-256-6:11

Download citation

  • DOI: https://doi.org/10.1385/0-89603-256-6:11

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-256-9

  • Online ISBN: 978-1-59259-517-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics