Skip to main content

Use of Antipeptide Antibodies for the Isolation and Study of Membrane Proteins

Part A. Preparation of Antibodies

  • Protocol
Biomembrane Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 27))

  • 700 Accesses

Abstract

Integral membrane proteins of physiological importance, such as ion channels, transporters, receptors, and enzymes, are usually minor components of the membrane. This low abundance, coupled with their hydrophobicity and frequent instability in detergent solution, renders them very difficult to purify for detailed investigation. As a consequence, most of our knowledge of these proteins has come from gene cloning, which has yielded the amino acid sequences of a large number of membrane proteins. This information allows the study of the tissue and subcellular distribution of the proteins, their topology in the membrane, and their isolation, using antipeptide antibodies, since antibodies raised against short peptides (10–20 amino acid residues) frequently recognize the corresponding sequence in intact proteins (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lerner, R. A. (1982) Tapping the immunological repertoire to produce antibodies of predetermined specificity. Nature 299, 592–596.

    Article  CAS  Google Scholar 

  2. Davies, A., Ciardelli, T. L., Lienhard, G. E., Boyle, J M., Whetton, A. D., and Baldwin, S. A. (1990) Site-specific antibodies as probes of the topology and function of the human erythrocyte glucose transporter. Biochem J. 266, 799–808

    PubMed  CAS  Google Scholar 

  3. LaRochelle, W. J, Wray, B. E., Sealock, R., and Froehner, S. C. (1985) Immunocytochemical demonstration that amino acids 360–377 of the acetylcholine receptor gamma-subunit are cytoplasmic. J. Cell Biol. 100, 684–691.

    Article  PubMed  CAS  Google Scholar 

  4. Lowry, O. H., Rosebrough, N. J., Farr, A. L, and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.

    PubMed  CAS  Google Scholar 

  5. Van Regenmortel, M. H. V. and Daney de Marcillac, G. (1988) An assessment of prediction methods for locating continuous epitopes in proteins. Immunol. Lett. 17, 95–108

    Article  PubMed  Google Scholar 

  6. Atherton, E. and Sheppard, R. C. (1989) Solid Phase Peptide Synthesis. IRL Press at Oxford University Press, Oxford.

    Google Scholar 

  7. Carrasco, N., Herzlinger, D., Danho, W., and Kaback, H R. (1986) Preparation of monoclonal antibodies and site-directed polyclonal antibodies against the lac permease of Escherichia coli. Methods Enzymol. 125, 453–467.

    Article  PubMed  CAS  Google Scholar 

  8. Bernatowicz, M S. and Matsueda, G. R. (1986) Preparation of peptide-protein immunogens using N-succinimidyl bromoacetate as a heterobifunctional cross-linking reagent. Anal. Biochem. 155, 95–102.

    Article  PubMed  CAS  Google Scholar 

  9. Lachman, P. J, Strangeways, L, Vyakarnam, A, and Evan, G. (1986) Raising antibodies by coupling peptides to PPD and immunizing BCG-sensitized animals, in Synthetic Peptides as Antigens, Ciba Foundation Symposium 119 (Porter, R. and Whelan, J., eds.), Wiley, Chichester, UK, pp. 25–57.

    Google Scholar 

  10. Wilchek, M. and Miron, T. (1987) Limitations of N-hydroxysuccinimide esters in affinity chromatography and protein immobilization Biochemistry 26, 2155–2161

    Article  PubMed  CAS  Google Scholar 

  11. Ellman, G. C (1959) Tissue sulfhydryl groups Arch. Biochem. Biophys 82, 70–77.

    Article  PubMed  CAS  Google Scholar 

  12. Riddles, P. W, Blakely, R. L, and Zerner, B (1979) Ellman’s Reagent 5,5′-dithiobis (2-nitrobenzoic acid)—a reexamination. Anal. Biochem 94, 75–81

    Article  PubMed  CAS  Google Scholar 

  13. Kwong, F. Y. P., Davies, A., Tse, C. M., Young, J. D., Henderson, P. J. F., and Baldwin, S. A. (1988) Purification of the human erythrocyte nucleoside transporter by immunoaffinity chromatography Biochem. J. 255, 243–249.

    PubMed  CAS  Google Scholar 

  14. Schneider, C, Newman, R. A., Sutherland, D. R., Asser, U., and Greaves, M F (1982) A one-step purification of membrane proteins using a high-efficiency immunomatrix. J. Biol Chem 257, 10,766–10,769.

    PubMed  CAS  Google Scholar 

  15. Davies, A, Meeran, K., Cairns, M. T, and Baldwin, S A (1987) Peptide-specific antibodies as probes of the orientation of the glucose transporter in the human erythrocyte membrane. J. Biol. Chem. 262, 9347–9352.

    PubMed  CAS  Google Scholar 

  16. Cairns, M T., Elliot, D A., Scudder, P. R., and Baldwin, S. A. (1984) Pro-teòlytic and chemical dissection of the human erythrocyte glucose transporter. Biochem. J. 221, 179–188.

    PubMed  CAS  Google Scholar 

  17. Gorga, F. R. and Lienhard, G. E. (1981) Equilibria and kinetics of ligand binding to the human erythrocyte glucose transporter. Evidence for an alternating conformation model for transport. Biochemistry 20, 5108–5113

    Article  PubMed  CAS  Google Scholar 

  18. Steck, T L. and Kant, J. A. (1974) Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes Methods Enzymol. 31, 172–180.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc. Totowa, NJ

About this protocol

Cite this protocol

Baldwin, S.A. (1994). Use of Antipeptide Antibodies for the Isolation and Study of Membrane Proteins. In: Biomembrane Protocols. Methods in Molecular Biology, vol 27. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-250-7:43

Download citation

  • DOI: https://doi.org/10.1385/0-89603-250-7:43

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-250-7

  • Online ISBN: 978-1-59259-514-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics