Skip to main content

Fluorescent Glycerolipid Probes

Synthesis and Use for Examining Intracellular Lipid Trafficking

  • Protocol
Biomembrane Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 27))

  • 707 Accesses

Abstract

The synthesis, characterization, and use of fluorescently labeled lipid probes to follow transport in living cells at a microscopic level have greatly expanded our knowledge of intracellular lipid trafficking. Although lipids containing a number of covalently attached fluorophores have been synthesized, most transport studies have used lipids labeled with 4-nitrobenzo-2-oxa-l,3-diazole (NBD).** Several lines of evidence suggest that NBD-labeled lipids faithfully mimic their native counterparts (see ref. 1 for review). For example:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pagano, R E and Sleight, R. G. (1985) Defining lipid transport pathways in animal cells. Science 229, 1051–1057

    Article  PubMed  CAS  Google Scholar 

  2. Struck, D. K. and Pagano, R. E. (1980) Insertion of fluorescent phospholipids into the plasma membrane of a mammalian cell. J. Biol. Chem 255, 5404–5410

    PubMed  CAS  Google Scholar 

  3. Sleight, R. G. and Pagano, R. E. (1985) Transbilayer movement of a fluorescent phosphatidylethanolamine analog across the plasma membrane of cultured mammalian cells J. Biol Chem 260, 1146–1154

    PubMed  CAS  Google Scholar 

  4. Monti, J. A, Christian, S. T, Shaw, W. A., and Finley, W. H. (1977) Synthesis and properties of a fluorescent derivative of phosphatidylcholine. Life Sei. 21, 345–356.

    Article  CAS  Google Scholar 

  5. Longmuir, K. J., Martin, O. C, and Pagano, R. E (1985) Synthesis of fluorescent and radiolabeled analogs of phosphatidic acid. Chem. Phys. Lipids 36, 197–207.

    Article  PubMed  CAS  Google Scholar 

  6. Boss, W. R., Kelly, C. J., and Landsberger, F. R. (1975) A novel synthesis of spin label derivatives of phosphatidylcholine. Anal. Biochem. 64, 289–292.

    Article  PubMed  CAS  Google Scholar 

  7. Yang, F., Freer, S., and Benson, A. A. (1967) Transphosphatidylation by phospholipase D. J. Biol. Chem. 242, 477–484.

    PubMed  CAS  Google Scholar 

  8. Pagano, R. E. and Longmuir, K. J. (1985) Phosphorylation, transbilayer movement and facilitated intracellular transport of diacylglycerol are involved in the uptake of a fluorescent analog of phosphatidic acid by cultured fibroblasts. J. Biol Chem. 260, 1990–1916.

    Google Scholar 

  9. Bligh, E. G. and Dyer, W. J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem Physiol. 37, 911–917.

    Article  PubMed  CAS  Google Scholar 

  10. Rouser, G., Siakotos, A. N., and Fleischer, S. (1966) Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis of spots. Lipids 1, 85–86.

    Article  PubMed  CAS  Google Scholar 

  11. Nichols, J. W. (1985) Thermodynamics and kinetics of phospholipid monomer-vesicle interaction. Biochemistry 24, 6390–6398.

    Article  PubMed  CAS  Google Scholar 

  12. Sleight, R. G. and Abanto, M. N. (1989) Differences in intracellular transport of a fluorescent phosphatidylcholine analog in established cell lines. J Cell Sci. 93, 363–374.

    PubMed  CAS  Google Scholar 

  13. Sleight, R. G. and Pagano, R. E. (1984) Transport of a fluorescent phosphatidylcholine analog from the plasma membrane to the Golgi apparatus. J. Cell Biol. 99, 742–751

    Article  PubMed  CAS  Google Scholar 

  14. Pagano, R. E, Longmuir, K J., and Martin, O. C. (1983) Intracellular translocation and metabolism of a fluorescent phosphatidic acid analog in cultured fibroblasts. J. Biol. Chem. 258, 2034–2040.

    PubMed  CAS  Google Scholar 

  15. Lipsky, N. G. and Pagano, R. E. (1985) A vital stain for the Golgi apparatus. Science 228,745–747

    Article  PubMed  CAS  Google Scholar 

  16. Hoekstra, D., de Boer, T., Klappe, K., and Wilschut, J. (1984) Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23, 5675–5681.

    Article  PubMed  CAS  Google Scholar 

  17. Dremer, J M. H., von der Esker, M. W. M., Pathmamanoharan, C, and Wiesma, P. A (1977) Vesicles of variable diameter prepared by a modified injection method. Biochemistry 16, 3932–3935.

    Article  Google Scholar 

  18. Hope, M. J., Bally, M. B., Webb, B., and Cullis, P. R. (1985) Production of large unilamellar vesicles by rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain membrane potential. Biochim. Biophys. Acta 812, 55–65

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc. Totowa, NJ

About this protocol

Cite this protocol

Sleight, R.G. (1994). Fluorescent Glycerolipid Probes. In: Biomembrane Protocols. Methods in Molecular Biology, vol 27. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-250-7:143

Download citation

  • DOI: https://doi.org/10.1385/0-89603-250-7:143

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-250-7

  • Online ISBN: 978-1-59259-514-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics