Skip to main content

Determination of the Transverse Topography of Membrane Lipids Using Enzymes and Covalent Labels as Probes

  • Protocol
Biomembrane Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 27))

  • 688 Accesses

Abstract

The basic principle for probing the transverse distribution of membrane lipids is simple. Lipids that are available for modification by enzymes or for covalent labeling in impermeable membrane vesicles are considered to be in the outer leaflet of the membrane bilayer, and those that are also accessible in permeable vesicles or only accessible in inside-out vesicles are considered to be in the inner leaflet of the membrane bilayer. However, the characteristics of the membrane preparation under investigation and the enzyme probe are critical in these experiments. The following criteria are important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higgins, J. A. and Pigott C. A. (1982) Asymmetric distribution of phosphati-dylethanolamine in the endoplasmic reticulum demonstrated using trinitrobenzene sulphonate as a probe. Biochim. Biophys. Acta 693, 151–158.

    Article  PubMed  CAS  Google Scholar 

  2. Kreibich, G., Debey, P, and Sabatini, D. (1973) Selective release of content from microsomal vesicles without membrane disassembly, 1 Permeability of changes induced by low detergent concentrations. J. Cell Biol. 58, 436–462.

    Article  PubMed  CAS  Google Scholar 

  3. Dallas, L. M. and Arion, W. J (1977) Measurement of glucose-6-phosphate penetration into liver microsomes. J. Biol. Chem. 252, 8512–8618.

    Google Scholar 

  4. Howell, K. E. and Palade, G. E. (1982) Hepatic Golgi fractions resolved into membrane and content subtractions J. Cell Biol 92, 833–845.

    Article  PubMed  CAS  Google Scholar 

  5. Fujiki, Y., Hubbard, A. L., Fowler, S., and Lazarow, P. B. (1982) Isolation of intracellular membranes by means of sodium carbonate treatment; application to endoplasmic reticulum. J. Cell Biol. 93, 97–102.

    Article  PubMed  CAS  Google Scholar 

  6. Higgins, J. A. and Fieldsend, J. K. (1987) Phosphatidylcholine synthesis for incorporation into membranes or for secretion as plasma lipoproteins by Golgi membranes of rat liver. J. Lipid Res. 28, 268–278

    PubMed  CAS  Google Scholar 

  7. Zwaal, R. F. A., Roelofson, B., Comfurius, B., and van Deenen, L. L. M. (1975) Organisation of phospholipids in human red cell membranes as detected by the action of various purified phospholipases. Biochim. Biophys. Acta 406, 83–96

    Article  PubMed  CAS  Google Scholar 

  8. Deems, R. A. and Denis, E A. (1971) Phospholipase A from cobra venom Methods Enzymol. 71, 703–710.

    Article  Google Scholar 

  9. Deems, R. A. and Denis, E. A. (1975) Characterisation and physical properties of the major form of phospholipase A2 from cobra venom (Naja naja) that has a molecular weight of 11000. J. Biol Chem 250, 9008–9012.

    PubMed  CAS  Google Scholar 

  10. Shipolini, R. A. Callewaert, G. L., Cottrell, R. C, Doonan, S., Vernon, C. A., and Banks, B. E. C. (1971) Phospholipase A from bee venom. Europ J. Biochem. 20, 459–468

    Article  PubMed  CAS  Google Scholar 

  11. Cottrell, M. C. (1971) Phospholipase A2 from bee venom Methods Enzymol. 71, 698–702.

    Article  Google Scholar 

  12. de Haas, G. H., Postema, N. M., Nieuwenhuizen, W., and Van Deenen, L L M. (1968) Purification and properties of phospholipase A from porcine pancreas. Biochim. Biophys. Acta 159, 103–117.

    PubMed  Google Scholar 

  13. Little, C. (1981) Phospholipase C from Bacillus cereus. Methods Enzymol. 71, 175–179.

    Google Scholar 

  14. Zwaal, R. F. A., Roelofsen, B., Comfurius, P., and Van Deenen, L. L. M (1971) Complete purifiction and some properties of phospholipase C from Bacillus cereus. Biochim. Biophys. Acta 233, 474–479.

    Article  PubMed  CAS  Google Scholar 

  15. Kahlenberg, A. and Banjo, B. (1972) Involvement of phospholipids in d-glucose uptake activity of isolated human erythrocyte membranes. J. Biol. Chem. 247, 1156–1160.

    PubMed  CAS  Google Scholar 

  16. Takahasi, T., Sugaharu, T., and Ohsaka, A. (1981) Phospholipase C from Clostridium perfringens. Methods Enzymol. 71, 710–725

    Article  Google Scholar 

  17. Low, M. G., Sternberg, J., Waneck, G. L., Flavell, R. A, and Kincade, P. W. (1988) Purification of phosphatidylinositol specific phospholipase C J. Immunol. Methods 113, 101–111.

    Article  PubMed  CAS  Google Scholar 

  18. Low, N. G. (1981) Phosphatidylinositol specific phospholipase C from Staphylococcus aureus. Methods Enzymol. 71, 741–745.

    Article  PubMed  CAS  Google Scholar 

  19. Kezawa, H L and Taguchi, R (1981) Phosphatidylinositol specific phospholipase C from Bacillus cereus and Bacillus thuringiensis. Methods Enzymol. 71, 731–740.

    Article  Google Scholar 

  20. Rawyler, A., van der Schaft, P. H., Roelofsen, B., and Op den Kamp, J. A. F. (1985) Phospholipid localisation in the plasma membrane of Friend erythroleukemic cells and mouse erythrocytes. Biochemistry 24, 1777–1783

    Article  PubMed  CAS  Google Scholar 

  21. Bevers, R. M., Comfurius, P., and Zwaal, R. F. A. (1983) Changes in membrane phospholipid distribution during platelet activation. Biochim. Biophys. Acta 736, 57–66.

    Article  PubMed  CAS  Google Scholar 

  22. Marinetti, G. V and Cattieu, K. (1982) Asymmetric metabolism of phosphati-dylethanolamine in the human red cell membrane, J. Biol. Chem. 10, 245–248.

    Google Scholar 

  23. Evans, J. A and Higgins, J. A. (1978) Transverse organization of phospholipids across the membrane of plasma membrane subfractions of rat hepatocytes. Biochem. J. 174, 563–567

    PubMed  Google Scholar 

  24. Meissner, G, and Allen, R. (1981) Evidence for two types of rat liver microsomes with differing permeability to glucose and other small molecules. J. Biol. Chem. 252, 6413–6422.

    Google Scholar 

  25. Polokoff, M. and Bell, R. M (1978) Limited palmityl CoA penetration into microsomal vesicles as evidenced by a highly latent ethanol acyltransferase. J. Biol Chem. 253, 7173

    PubMed  CAS  Google Scholar 

  26. Higgins, J. A. (1984) The transverse distribution of phospholipids in the membranes of Golgi subfractions of rat hepatocytes Biochem. J 219, 261–272.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Humana Press Inc. Totowa, NJ

About this protocol

Cite this protocol

Higgins, J.A. (1994). Determination of the Transverse Topography of Membrane Lipids Using Enzymes and Covalent Labels as Probes. In: Biomembrane Protocols. Methods in Molecular Biology, vol 27. Springer, Totowa, NJ. https://doi.org/10.1385/0-89603-250-7:109

Download citation

  • DOI: https://doi.org/10.1385/0-89603-250-7:109

  • Publisher Name: Springer, Totowa, NJ

  • Print ISBN: 978-0-89603-250-7

  • Online ISBN: 978-1-59259-514-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics