Skip to main content

Retrograde Axonal Transport

Applications in Trophic Factor Research

  • Protocol
Neurotrophic Factors

Part of the book series: Neuromethods ((NM,volume 25))

Abstsract

The extremely elongated processes of neurons—especially axons—present an unusual challenge to the metabolic machinery of the cell. A consequence of this geometry is that the metabolic and specialized (e.g., transmission) needs of axon terminals are dependent on the perikaryon (the primary biosynthetic site of the neuron) via shipment of the necessary material along the axon. This fundamental neuronal process is called “anterograde transport” and proceeds along at least five different rate classes, the highest of which (20–400 mm/d) constitute the fast anterograde transport and the lowest of which (0.1–20 mm/d) represent slow anterograde transport (Vallee and Bloom, 1991). An estimated fraction equivalent to 10–70% of fast anterograde transport is returned to the cell body via retrograde transport (Vallee and Bloom, 1991), with velocities ranging from 120 to 240 mm/ d (Schwab and Thoenen, 1980). Retrograde transport, much like fast anterograde transport, is blocked by microtubule assembly inhibitors such as colchicine and vinblastine (Grafstein and Forman, 1980), an effect that underlies an important role for microtubules in this biological process. The role of microtubules in retrograde transport has been clarified recently, with the discovery of the microtubule-associated motor proteins kinesin (responsible for anterograde transport) and MAP 1C (responsible for retrograde transport) (Vallee and Bloom, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguayo A. J., Vidal-Sanz M, Villegas-Peréz M. P. J., and Bray G. M. (1987) Growth and connectivity of axotomized retinal neurons in adult rats with optic nerves substituted by PNS grafts linking eye and the midbrain. Ann. NYAcud. Sci. 1–9.

    Google Scholar 

  • Alheid G. F. and Carlsen J. (1982) Small injections of fluorescent tracers by iontophoresis or chronic implantation of micropipettes. Bruin Res. 255, 176–178.

    Google Scholar 

  • Aloe L., Mugnaini E., and Levi-Montacini R. (1975) Light and electron microscopic studies on the excessive growth of sympathetic ganglia in rats mjected daily from birth with 6-OHDA and NGF, in Archives Italiennes De Bzologie. Pisa, Universita Degli Studi, pp. 326–353.

    Google Scholar 

  • Andres R., Jeng I., and Bradshaw R. A. (1977) Nerve growth factor receptors: Identification of distinct classes in plasma membranes and nuclei of embryonic dorsal root neurons. Proc. Natl. Ad. Sci. USA 74, 2785–2789.

    Article  CAS  Google Scholar 

  • Apfel SC, Lipton RB., Arezzo J. C., and Kesgler J. A. (1991) Nerve growth factor prevents toxic neuropathy in mice. Ann. Neural. 29, 87–90.

    Article  CAS  Google Scholar 

  • Applegate M. D., Koliatsos V. E., and Price D. L. (1989) Extended survival of medial septal cholinergic neurons following lesions of the fimbriafomix. Soc. Neurosci. Abstr. 15, 408.

    Google Scholar 

  • Arimatsu Y., Miyamoto M., Tsukui H., and Hatanaka H. (1988) Nerve growth factor enhances survival of identified projection neurons in the rat septal and diagonal band regions in vitro. Sot. Neurosci. Abstr. 14, 1114.

    Google Scholar 

  • Armstrong D. M., Terry R. D., DeTeresa R. M., Bruce G., Hersh L. B., and Gage F. H. (1987) Response of septal cholinergic neurons to axotomy. J. Camp. Neural. 264, 421–436.

    Article  CAS  Google Scholar 

  • Auburger G., Heumann R., Hellweg R., Korsching S., and Thoenen H. (1987) Developmental changes of nerve growth factor and its mRNA in the rat hippocampus: comparison with choline acetyltransferase. Den Biol. 120, 322–328.

    Article  CAS  Google Scholar 

  • Bandtlow C. E., Heumann R., Schwab M. E., and Thoenen H. (1987) Cellular localization of nerve growth factor synthesis by in situ hybridization. EMBO J. 6, 891–899.

    PubMed  CAS  Google Scholar 

  • Barde Y-A. (1989) Trophic factors and neuronal survival. Neuron 2, 1525–1534.

    Article  PubMed  CAS  Google Scholar 

  • Barnett J., Baecker P., Routledge-Ward C., Bursztyn-Pettegrew H., Chow J., Nguyen B., Bach C., Chan H., Tuszynskr M. H., Yoshida K., Rubalcava R., and Gage F. H. (1990) Human β nerve growth factor obtained from a baculovirus expression system has potent in vitro and in viva neurotrophic activity. Exp. Neurol. 110, 11–24.

    Article  PubMed  CAS  Google Scholar 

  • Bentivoglio M., Juyperg H. G. J. M., Catgman-Berrevoets C. E., Loewe H., and Dann O. (1980) Two new fluorescent retrograde neuronal tracers which are transported over long distances. Neurosn. Lett. 18 25–30.

    Article  CAS  Google Scholar 

  • Bentivoglio M., Kuypers G. J..M, Catsman-Berrevoets C. E., and Dann O (1979) Fluorescent retrograde neuronal labeling in rat by means of substance binding specifically to adenine-thymine rich DNA. Neuroscz. Lett. 12, 235–240.

    Article  CAS  Google Scholar 

  • Berkemeier L. R., Wrnslow J. W., Kaplan D. R., Nikolics R., Goeddel D. V., and Rosenthal A. (1991) Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron 7, 857–866.

    Article  PubMed  CAS  Google Scholar 

  • Bernd P. and Greene L A. (1984) Association of 125Inerve growth factor with PC12 pheochromocytoma cells. J. Bid. Chem. 259, 15,509–15,516.

    CAS  Google Scholar 

  • Bjerre B., Wiklund L., and Edwards D. (1975) A study of the deand regenerative changeg in the sympathetic nervous system of the adult mouse after treatment w&h antiserum to nerve growth factor. Brain Res. 92, 257–278.

    Article  PubMed  CAS  Google Scholar 

  • Bolton A. E. and Hunter W. M. (1973) The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent.

    Google Scholar 

  • Blochem. J. 133, 529–539.

    Google Scholar 

  • Boulton T. G., Nye S. H., Robbing D. J., Ip N. Y., Radziejewska E., Morgenbesser S. D., DePinho D. A., Panayotatos N., Cobb M. H., and Yancopoulos D. (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663–675.

    Article  PubMed  CAS  Google Scholar 

  • Brightman M. M. (1965) The distribution within the brain of ferritin inlected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am. J. Anat. 117, 193–220.

    Article  PubMed  CAS  Google Scholar 

  • Brunso-Bechtold J. K. and Hamburger V. (1979) Retrograde transport of nerve growth factor in chicken embryo. Proc. Natl. Acad. Sa. USA 76, 149–1496.

    Article  Google Scholar 

  • Cabot J. B., Mennone A., Bogan N., Carroll J., Evinger C., and Erichsen J. T. (1991) Retrograde, trans-synaptic and transneuronal ransport of fragment C of tetanus toxin by sympathetic preganglionic neurons. Neuroscience 40, 805–823.

    Article  PubMed  CAS  Google Scholar 

  • Cantley L. C., Auger K. R., Carpenter C., Duckworth B., Graziani A., Kapeller R., and Soltoff S. (1991) Oncogenes and signal transduction. Cell 64, 281–302.

    Article  PubMed  CAS  Google Scholar 

  • Cavicchioli L., Flanigan T. P., Dickson J. G., Vantini G., Toso R. D., Fusco M., Walsh F. S., and Leon A. (1991) Choline acetyltransferase messenger RNA expression in developing and adult rat brain: regulation by nerve growth factor. Mol. Bruin Res. 9, 319–325.

    Article  CAS  Google Scholar 

  • Cavicchioli L., Flanigan T. P., Vantini G., Fusco M, Polato P., Toffano G., Walsh F. S., and Leon A. (1989) NGF amplifies expression of NGF receptor messenger RNA in forebrain cholinergic neurons of rats. Eur. J. Neurosci. 1, 258–262.

    Article  PubMed  Google Scholar 

  • Chang H. T., Kuo H., Whittaker J. A., and Cooper N. G. F. (1990) Light and electron microscopic analysis of projection neurons retrogradely labeled with Fluoro-Gold: notes on the application of antibodies to Fluoro-Gold. J. Neurosci. Methods 35, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Chao M. V. (1992) Growth factor signaling: where is the specificity? cell 68, 995–997.

    Article  PubMed  CAS  Google Scholar 

  • Clatterbuck R. E., Koliatsos V. E., and Price D. L. (1990) Peripheral nerve segments provide a matrix for axonal outgrowth of axotomized basal forebrain cholinergic and anterror thalamic neurons. Soc. Neurosci. Abstr. 16, 1283.

    Google Scholar 

  • Coons A. H (1956) Histochemistry with labeled antibody. Int. Rev. Cytol. 5, 1–24.

    Article  CAS  Google Scholar 

  • Cowan W. M., Gottlieb D. I., Hendrickson A. E., Price J, L., and Woolsey T. A. (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Bruin Res. 37, 21–51.

    Article  CAS  Google Scholar 

  • Crutcher R. A. (1982) Development of the rat septohippocampal projection: a retrograde fluorescent tracer study. Dev. Bruin Res. 3, 145–150.

    Article  CAS  Google Scholar 

  • Csillik B., Schwab M. E., and Thoenen H. (1985) Transganglionic regulation of central terminals of dorsal root ganglion cells by nerve growth factor (NGF). Bruin Res. 331, 11–15.

    Article  CAS  Google Scholar 

  • Dado R. J., Burstein R., Cllffer K. D., and Giesler G. J., Jr. (1990) Evidence that Fluoro-Gold can be transported avidly through fibers of passage. Bruin Res. 533, 329–333.

    Article  CAS  Google Scholar 

  • Davies A. M. (1989) Neurotrophic factor bioassay using dissociated neurons, in Nerve Growth Factors. IBRO Handbook series, Methods in the Neurosciences, vol. 12 (Rush R. A., ed.), Wiley, Chichester, pp. 95–109.

    Google Scholar 

  • Davies A. M., Bandtlow C., Heumann R., Rorsching S., Rohrer H., and Thoenen H. (1987) Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature 326, 353–358.

    Article  PubMed  CAS  Google Scholar 

  • Davis S., Aldrich T. H., Valenzuela D. M., Wong V., Furth M. E., Squinto S. P., Yancopoulos G. D. (1991) The receptor for ciliary neurotrophic factor. Science 253, 59–63.

    Article  PubMed  CAS  Google Scholar 

  • DiStefano P. S., Friedman B., Radziejewski C., Alexander C., Boland P., Schick C. M., Lmdsay R. M., and Wiegand S. J. (1992) The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8, 983–993.

    Article  PubMed  CAS  Google Scholar 

  • Dumas M., Schwab M. E., Baumann R., and Thoenen H. (1979) Retrograde transport of tetanus toxin through a chain of two neurons. Bruin Res. 165, 354–357.

    Article  CAS  Google Scholar 

  • Ebendal T. E, (1989) Use of collagen gels to bioassay nerve growth factor activity, in Nerve Growth Factors. IBRO Handbook Series, Methods in the Neurosciences, vol. 12 (Rush, R. A., ed.), John Wiley & Sons, Chichester, pp. 81–93.

    Google Scholar 

  • Edwards S. B. (1972) The ascending and descending projections of the red nucleus in the cat, an experimental study using an autoradiographic tracing method. Bruin Res. 48, 45–63, 1972.

    Article  CAS  Google Scholar 

  • Ernfors P., Ibez C. F., Ebendal T., Olon L., and Persson H. (1990) Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain. Proc. Natl. Acad. Sci. USA 87, 5454–5458.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P., Wetmore C., Olson L., and Persson H. (1990) Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron 5, 511–526.

    Article  PubMed  CAS  Google Scholar 

  • Penstermacher J. and Kaye T. (1988) Drug diffusion within the brain. Ann. Nγ Acad. Sci. 531, 29–39.

    Article  Google Scholar 

  • Ferguson I. A. and Johnson E. M., Jr. (1991) Fibroblast growth factor receptor-bearing neurons in the CNS: identification by receptor-mediated retrograde transport. J, Comp. Neurol. 313, 693–706.

    Article  CAS  Google Scholar 

  • Ferguson I. A., Schweitzer J. B., Bartlett P. F., and Johnson E. M., Jr. (1991) Receptor-mediated retrograde transport in CNS neurons after intraventricular administration of NGF a growth factors. J. Comp. Neurol. 313, 680–692.

    Article  PubMed  CAS  Google Scholar 

  • Ferraro A. (1928) The connections of the pars suboculomotoria of the substantianigra. Arch. Neural. Psychiatr. 19, 177–180.

    Google Scholar 

  • Fischer W. and Björklund A. (1991) Loss of AChE-and NGFr-labeling precedes neuronal death of axotomized septal-diagonal band neurons: reversal by intraventricular NGF infusion. Exp. Neural. 113, 93–108.

    Article  CAS  Google Scholar 

  • Fishman P. S and Carrigan D. R. (1987) Retrograde transneuronal transfer of the C-fragment of tetanus toxin. Brain Res. 406, 275–279, 1987.

    Article  PubMed  CAS  Google Scholar 

  • Frazier W. A., Boyd L. F., and Bradshaw R. A. (1974) Properties of the specific bindmg of 125I-nerve growth factor on responsive peripheral neurons. J. Biol. Chem. 249, 5513–5519.

    PubMed  CAS  Google Scholar 

  • Friedman B. and Aguayo A. J. (1985) Injured neurons in the olfactory bulb of the adult rat grow axons along grafts of peripheral nerve. J, Neurosci. 5, 1616–1625.

    CAS  Google Scholar 

  • Gage F. H., Armstrong D. M., Williams L. R., and Varon S. (1988) Morphological response of axotomized septal neurons to nerve growth factor. J. Comp. Neural. 269, 147–155.

    Article  CAS  Google Scholar 

  • Gage F. H., Stenevi U., Carlstedt T., Foster G., Björklund A., and Aguayo A. J. (1980) Anatomical and functional consequences of grafting mesencephalic neurons into a peripheral nerve bridge connected to the denervated striatum. Exp. Bruin Res. 60, 584–589.

    Google Scholar 

  • Gage F. H., Wictorin R., Fischer W., Williams L. R., Varon S., and Bjorkhmd A. (1986) Retrograde cell changes in medial septum and diagonal band following fimbria-fornix transection: quantitative temporal analysis. Neuroscience 19, 241–255.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen C. R., Sawchenko P. E., and Carlsen J. (1989) The PHA-L anterograde axonal tracing method, in NeuroanatomicuI Tract-Tracing Methods 2. Progress Report (Heimer L. and Zaborszky L., eds.), New York, Plenum, pp. 19–47.

    Chapter  Google Scholar 

  • Gizang-Ginsberg E. and Ziff E. B. (1990) Nerve growth factor regulates tyrosine hydroxylase gene transcription through a nucleoprotein complex that contains c-Fos. Genes Deu. 4, 477–491.

    Article  CAS  Google Scholar 

  • Glover J. C., Petursdottu G., and Jansen J. R. S. (1986) Fluorescent dextranamines used as axonal tracers in the nervous system of the chicken embryo. J Neurosci. Methods 18, 243–254.

    Article  PubMed  CAS  Google Scholar 

  • Grafstein B. and Forman D. S. (1980) Intracellular transport in neurons. Physiol. Rev. 60, 1167–1283.

    PubMed  CAS  Google Scholar 

  • Green J., Erdmann G., and Wellhoner H. H. (1977) Is there retrograde axonal transport of tetanus toxin in both alpha and gamma fibres? Nature 265, 370.

    Article  PubMed  CAS  Google Scholar 

  • Green S. H., Rydel R. E., Connolly J. L., and Greene L. A. (1986) PC12 cell mutants that possess lowbut not high-affinity nerve growth factor receptors neither respond to nor internalize nerve growth factor. J. Cell Biol. 102, 830–843.

    Article  PubMed  CAS  Google Scholar 

  • Greene L. A. (1977) A quantitative bioassay for nerve growth factor activity employing a clonal pheochromocytoma cell line. Bruzn Res. 133, 350–353.

    Article  CAS  Google Scholar 

  • Greenwood F. C. and Hunter W. M. (1963) The preparatron of 13I-labelled human growth hormone of high specific radioactivity. Biochem. J, 89, 114–123.

    PubMed  CAS  Google Scholar 

  • Hagag N., Halegoua S., and Viola M. (1986) Inhibition of growth factorinduced differentiation of PC12 cells by microinjection of antibody to rus p21. Nature 319, 680–682.

    Article  PubMed  CAS  Google Scholar 

  • Halegoua S., Armstrong R. G, and Cremer N. E. (1991) Dissecting the mode of action of a neuronal growth factor. Cum Top. Microbial. Immunol. 165, 119–170.

    Article  CAS  Google Scholar 

  • Hallböök F., Ibáñez C. F., and Persson H. (1991) Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6, 845–858.

    Article  PubMed  Google Scholar 

  • Hamburger V., Brunso-Bechtold J. R., and Yip J. W. (1988) Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci. 1, 60–71.

    Google Scholar 

  • Hansson H. A. (1972) Retinal changes induced by treatment with vmcristine and vinblastine. Dot. Ophthulmol. 31, 65–88.

    CAS  Google Scholar 

  • Hayashl Y. and Milu N. (1985) Purification and characterization of a neurite outgrowth factor from chicken gizzard smooth muscle. J. Biol. Chem. 260, 14,269–14,278.

    Google Scholar 

  • Hefti F. (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 6, 2155–2162.

    PubMed  CAS  Google Scholar 

  • Hendry I. A. (1989) In vivo admmistration of nerve growth factor, in Nerve Growth Factors. IBRO Handbook Series, Methods in the Neurosciences, vol. 12 (Rush R. A., eds.), Chichester, John Wiley & Son, pp. 193–212.

    Google Scholar 

  • Hendry I. A. and Iversen L. L. (1971) Effect of nerve growth factor and its antiserum on tyrosine hydroxylase activity in mouse superior cervical sympathetic ganglion. Brain Res. 29, 159–162.

    Article  PubMed  CAS  Google Scholar 

  • Hendry I. A., Stach R., and Herrup R. (1974) Characteristics of the retrograde axonal transport system for nerve growth factor in the sympathetic nervous system. Brain Res. 82, 117–128.

    Article  PubMed  CAS  Google Scholar 

  • Heredia M., Santacana N., and Valverde F. (1991) A method using Dil to study the connectivity of cortical transplants. J. Neurosci. Meth. 36, 17–25.

    Article  CAS  Google Scholar 

  • Herrup K. and Shooter E. M. (1973) Properties of the nerve growth factor receptor of an avian dorsal root ganglia. Proc. Natl. Acad. Sci. USA 70, 3884–3888.

    Article  PubMed  CAS  Google Scholar 

  • Heumann R., Schwab M., and Thoenen H. (1981) A second messenger required for nerve growth factor biological activity? Nature 292, 838–840.

    Article  PubMed  CAS  Google Scholar 

  • Higgins G. A., Roh S., Chen R. S., and Gage F. (1989) NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron 3, 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Hofer M., Pagliusi S. R., Hohn A., Leibrock J., and Barde Y-A. (1990) Regional distribution of bram-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 9, 2459–2464.

    PubMed  CAS  Google Scholar 

  • Hohn A., Liebrock J., Bailey R., and Barde Y-A. (1990) Identification and characterization of a novel member of the nerve growth factor/brainderived neurotrophic factor family. Nature 344, 339–341.

    Article  PubMed  CAS  Google Scholar 

  • Hokfelt T., Skagerberg G., Skirboll L. and Björklund A. (1983) Combinaton of retrograde tracing and neurotransmitter histochemistry, in Methods in Chemical Neuroanatomy, Handbook of Chemical Neuroanatomy, vol. 1 (Bjorklund A. and Höfelt T., eds.), Elsevier Science, Amsterdam, pp. 228–285.

    Google Scholar 

  • Honig M. G. and Hume R. I. (1989) DiI and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci. 12, 333–341.

    Article  PubMed  CAS  Google Scholar 

  • Honig M. G. and Hume R. I. (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J. CeU Biol. 103, 171–187.

    Article  CAS  Google Scholar 

  • Hosang M. and Shooter E. M. (1987) The internalization of nerve growth factor by high-affinity receptors on pheochromocytoma PC12 cells. EMBO J. 6, 1197–1202.

    PubMed  CAS  Google Scholar 

  • Houle J. D. and Johnson J. E. (1989) Nerve growth factor (NGF)-treated nitrocellulose enhances and directs the regeneration of adult rat dorsal root axons through intraspinal neural tissue transplants. Neurosci. Lett. 103, 17–23.

    Article  PubMed  CAS  Google Scholar 

  • Hughes W. L. (1957) The chemistry of iodination. Ann. N.Y. Acad. Sci. 70, 3–18.

    Article  PubMed  CAS  Google Scholar 

  • Ibáñz C. F., Ebendal T., Barbany G., Murray-Rust J., Blundell T. L., and Persson H. (1992) Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product. Cell 69, 329–341.

    Article  Google Scholar 

  • Ip N. Y., Ibez C. F., Nye S. H., McClain J., Jones P. F., Gies D. R., Belluscio L., Le Bean M. M., Espinosa R., Squinto S. P., Persson H., and Yancopoulos G. D. (1992) Mammahan neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc. Natl. Acud. Scz. USA 89, 3060–3064.

    Article  CAS  Google Scholar 

  • Iversen L. L., Stockel R., and Thoenen H. (1975) Autoradiographic studies of the retrograde axonal transport of nerve growth factor in mouse sympathetic neurones. Bruin Aes. 88, 37–43.

    Article  CAS  Google Scholar 

  • Imamura T., Engleka R., Zhan X., Tokita Y., Forough R., Roeder D., Jackson A., Maier J. A. M., Hla T., and Macias T. (1990) Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science 249, 1567–1570.

    Article  PubMed  CAS  Google Scholar 

  • Johnson E. M. Jr., Andres R. Y., and Bradshaw R. A. (1978) Characterization of the retrograde transport of nerve growth factor (NGF) using high specific activity [125]NGF. Brain Res. 150, 319–331.

    Article  PubMed  CAS  Google Scholar 

  • Johnson R. T. and Griffin D. E. (1978) Pathogenesis of viral infections, in Handbook of Clinicul Neurology. Infections of the Nervous System (Vinken P. J. and Bruyn G. W., eds.), North Holland, Amsterdam, pp. 15–37.

    Google Scholar 

  • Johnson E. M., Jr., Taniuchi M., Clark H. B., Springer J. E., Roh S., Taynen M. W., and Loy R. (1987) Demonstration of the retrograde transport of nerve growth factor receptor in the peripheral and central nervous system. J. Neurosci. 7, 923–929.

    PubMed  CAS  Google Scholar 

  • Kaplan D. R., Hempstead B. L., Martm-Zanca D., Chao V., and Parada L. F. (1991) The trk proto-oncogene product a signal transducing receptor for nerve growth factor. Science 252, 554–558.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan D. R., Martin-Zanca D, and Parada L. F. (1991) Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncoge product mduced by NGF. Nature 350, 158–160.

    Article  PubMed  CAS  Google Scholar 

  • Katz L. C., Burkhalter A., and Dreyer W. J. (1984) Fluorescent latex microspheres as a retrograde neuronal marker for in viva and in vitro studies of visual cortex. Nature 310, 498–500.

    Article  PubMed  CAS  Google Scholar 

  • Kessler J.A. and Black I. B. (1980) Nerve growth factor stimulates the development of substance P in sensory ganglia. Proc. Natl. Acud. Sci. USA 77’ 649–652.

    Article  CAS  Google Scholar 

  • Kessler J. A., Adler J. E., and Black I. B. (1982) Regulation of substance P and somatostatin in sympathetic and sensory neurons. Neurology 32, 107.

    Article  Google Scholar 

  • Klem R., Jing S., Nanduri V., O’Rourke E., and Barbacid M. (1991) The trk protooncogene encodes a receptor for nerve growth factor. Cell 65, 189–197.

    Article  Google Scholar 

  • Koliatsos V. E. and Price D. L. (1991) The basal forebrain cholinergic system: an evolving concept in the neurobiology of the forebrain, in Activation to Acquisition. Functional Aspects of the Basal Forebrain Cholinergic System (Richardson R. T., ed.), Birkhauser, Boston, pp. 11–71.

    Chapter  Google Scholar 

  • Koliatsos V. E., Applegate M. D., Kitt C. A., Walker L. C., DeLong M. R., and Price D. L. (1989) Aberrant phosphorylation of neurofilaments accompanies transmitter-related changes in rat septal neurons following transection of the fihria-forinx. Bruin Res. 482, 205–218.

    Article  CAS  Google Scholar 

  • Koliatsos V. E., Applegate M. D., Knusel B., Junard E O., Burton L. E., Mobley W. C., Hefti F. F., and Price D. L. (1991) Recombinant human nerve growth factor prevents retrograde degeneration of axotomized basal forebrain cholinergic neurons in the rat. Exp. NeuroI. 112, 161–173.

    Article  CAS  Google Scholar 

  • Kollatsos V. E., Clatterbuck R. E., Nauta H. J. W., Knusel B., Burton L. E., Hefti F. F., Mobley W. C., and Price D. L. (1991) Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann. Neural. 30, 831–840.

    Article  Google Scholar 

  • Koliatsos V. E., Crawford T. O., and Price D. L. (1991) Axotomy induces nerve growth factor receptor immunoreactivity in spinal motor neurons. Brain Res. 549, 297–304.

    Article  PubMed  CAS  Google Scholar 

  • Koliatsos V. E., Martin L. J., and Price D. L. (1990) Efferent organization of the mammalian basal forebrain, in Brain ChoZinergic Systems (Steriade M. and Biesold D., eds.), Oxford University Press, Oxford, pp. 120–152.

    Google Scholar 

  • Koliatsos V. E., Nauta H. J. W., Clatterbuck R. E., Holtzman D. M., Mobley W. C., and Price D. L. (1990) Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholmergic neurons in the monkey. J. Neurosci. 10, 3801–3813.

    PubMed  CAS  Google Scholar 

  • Koliatsos V. E., Clatterbuck R. E., Winslow J-W., Cayouette M. H., and Price D. L. (1993) Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron, 10, 1–9.

    Article  Google Scholar 

  • Kristensson X., Olsson Y., and Sjostrand J. (1971) Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain Res. 32, 399–406.

    Article  PubMed  CAS  Google Scholar 

  • Kromer L. F. (1987) Nerve growth factor treatment after brain prevents neuronal death. Science 235, 214–216.

    Article  PubMed  CAS  Google Scholar 

  • Kuypers H. G. J. M. and Huisman A. M. (1984) Fluorescent neuronal tracers. Adv. Cell Neurobiol. 5, 307–340.

    Google Scholar 

  • Kuypers H. G. J. M. and Ugolini G. (1990) Viruses as transneuronal tracers. Trends Neurosci. 13, 71–75.

    Article  PubMed  CAS  Google Scholar 

  • Kuypers H. G. J. M., Bentivoglio M., Van der Kooy D., and Ca&nann-Berrevoets C. E. (1979) Retrograde transport of bisenzimide and propidium iodide through axons to their parent cell bodies. Neurosci. Lett. 12, 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Kuypers H. G. J. M., Catsmann-Berrevoets C. E., and Padt R. E. (1977) Retrograde axonal transport of fluorescent substances in the rat’s forebrain. Neurosci. Lett. 6, 127–135.

    Article  PubMed  CAS  Google Scholar 

  • Lamballe F., Klein R., and Barbacid N. (1991) trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66, 967–979.

    Article  PubMed  CAS  Google Scholar 

  • Landis S. C. (1990) Target regulation of neurotransmitter phenotype. Trends Neurosci. 13’ 344–350.

    Article  PubMed  CAS  Google Scholar 

  • LaVail J. H. and La Vail M. M. (1972) Retrograde axonal transport in the central nervous system. Science 176, 1416–1417.

    Article  PubMed  CAS  Google Scholar 

  • Lazarovicr P., Dickens G., Kuzuya H., and Guroff G. (1987) Long-term, heterologous down-regulation of the epidermal growth factor receptor in PC12 cells by nerve growth factor. J. Cell Biol. 104, 1611–1621.

    Article  Google Scholar 

  • Leibrock J., Lottspelch F., Hohn A., Hofer N., Hengerer B., Masiakowski P., Thoenen H., and Barde Y-A. (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341, 149–152.

    Article  PubMed  CAS  Google Scholar 

  • Leonard D. G. B., Ziff E. B., and Greene L. A. (1987) Identification and characterization of mRNAs regulated by nerve growth factor in PC12 cells. Mol. Cell Biol. 7 3156–3167.

    PubMed  CAS  Google Scholar 

  • Levi-Montalcini R. and Angeletti P. U. (1968) Nerve growth factor. Physiol. Rev. 48, 534–569.

    PubMed  CAS  Google Scholar 

  • Lindsay R. M. (1988) nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J. Neurosci. 8, 2394–2405.

    PubMed  CAS  Google Scholar 

  • Lumsden A. G. S. and Davies A. M. (1983) Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor. Nature 306, 786–788.

    Article  PubMed  CAS  Google Scholar 

  • Lynch G., Gall C., Mensah P., and Cotman C W. (1974) Horseradish peroxidase histochemistry, a new mehod for tracing efferent projections in the central nervous system. Bruin Res, 65, 373–380.

    Article  CAS  Google Scholar 

  • Maisonpierre P. G, Belluscio L., Suinto S., Ip N. Y., Furth M, E., Lindsay R. M., and Yancopoulos G. D. (1990) Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science 247, 1446–1451.

    Article  PubMed  CAS  Google Scholar 

  • Manning P. T., Russell J. H., Simmons B., and Johnson E. M., Jr. (1985) Protection from guanethidine-induced neuronal destruction by nerve growth factor: effect of NGF on immune function. Brain Res. 340, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Marchalonis J. J. (1969) An enzymatic method for the trace iodination of immunoglobulins and other proteins. Biochem. J. 113, 299–305.

    PubMed  CAS  Google Scholar 

  • Menetrey D. (1985) Retrograde tracing of neural pathways with a proteingold complex. I. Light microscopic detection after silver intensification. Histochemistry 83, 391–395.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam M-M. (1982) Tracing Neural Connections with Horseradish Peroxiduse. John Wiley & Sons, Chichester.

    Google Scholar 

  • Mobley W. C., Rutkowski J. L., Tennekoon G. I., Gemski J., Buchanan R., and Johnston M. V. (1986) Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Mol. Brain Res. 1, 53–62.

    Article  Google Scholar 

  • Mufson E. L., Brady D. R., and Kordower J. H. (1990) Tracing neuronal connections in postmortem human hippocampal complex with the carbocyanine dye DiI. Neurobiol. Aging 11, 649–653.

    Article  PubMed  CAS  Google Scholar 

  • Nauta W. J. H. and Gygax P, A. (1951) Silver impregnation of degenerating axon terminals in the central nervous system: (1) technic. (2) chemical notes. Stain Technol. 26, 5–11.

    PubMed  CAS  Google Scholar 

  • Nauta W. J. H. and Gygax P. A. (1954) Silver impregnation of degenerating axons in the central nervous system: a modified technique. Stain Technol. 29, 91–93.

    PubMed  CAS  Google Scholar 

  • Nissl F. (1984) Der gegenwartige Stand der Nervenzellenanatomie und irhe nächsten Zlele. Neural. Centralbl. 14, 66–75.

    Google Scholar 

  • O’Brien T. S., Svendsen C. N., Isacson O., and Sofroniew M. V. (1990) Loss of True blue labelling from the medial septum following transection of the funbria-fornix: evidence for the death of cholinergic and noncholinergic neurons. Brazn Res. 508, 249–256.

    Article  Google Scholar 

  • Oppenheim R. W. (1989) The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci. 12, 252–255.

    Article  PubMed  CAS  Google Scholar 

  • Paschal B. M., Shpetner S., and Vallee R. B. (1987) MAP 1C is a microtubuleactivated ATPase which translocates microtubules in vitro and has dynein-like properties. J. Cell Bid. 105, 1273–1282.

    Article  CAS  Google Scholar 

  • Pearson R. C. A., Sofroniew M. V., and Powell T. P. S. (1984) Hypertrophy of mununohistochemically identified cholinergic neurons of the basal nucleus of Meynert following ablation of the contralateral cortex in the rat. Bruin Res. 311, 194–198.

    Article  CAS  Google Scholar 

  • Plckel V. M. and Milner T. A. (1980) Interchangeable uses of autoradiographic and peroxidase markers for electron microscopic detection of neuronal pathways and transmitter-related antigens in single sections, in Neuroanatomical Tract-Tracing Methods 2. Progress Report (Heuner L. and Zaborszky L., eds.), Plenum, New York, pp. 97–127.

    Google Scholar 

  • Price D. L. and Griffin J. (1976) Neural transport of tetanus toxin. Science 192, 159.

    CAS  Google Scholar 

  • Price D. L., Griffin J., Young A., Peck K., and Stocks A. (1975) Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science 188, 945–947.

    Article  PubMed  CAS  Google Scholar 

  • Purves D. (1988) Body and Brain. A Trophic Theory of Neural Connections. Harvard University, Cambridge.

    Google Scholar 

  • Rho J-H. and Sidman R. L. (1986) Intracellular injection of Lucifer yellow into lightly fixed cerebellar neurons. Neurosci. Lett. 72, 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Rho J-H. and Swanson L. W. (1987) Neuroendocrine CRF motoneurons: intrahypothalamic axon terminals shown with a new retrograde Lucifer-immuno method. Brazn Res. 436, 143–147.

    Article  CAS  Google Scholar 

  • Richardson P. M. and Riopelle R. J. (1986) Influences of peripheral nerve components on axonal growth. Ann. NY Acad. Sci. 486, 182–193.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Tébar A. and Barde Y-A. (1988) Binding characteristics of brainderived neurotrophic factor to its receptors on neurons from the chick emryo. J. Neurosci. 8, 3337–3342.

    PubMed  Google Scholar 

  • Rosenthal A., Goeddel D. V., Nguyen T., Lewis M., Shah A., Laramee G. R., Nikolics K., and Winslow J. W. (1990) Primary structure and biological activity of a novel human-neurotrophic factor. Neuron 4, 767–773.

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal A., Goeddel D. V., Nguyen T., Martin E, Burton L. E., Shih A., Laramee G. R., Wurm F., Mason A., Nikolics K., and Winslow J. W. (1991) Primary structure and biological activity of human brainderived neurotrophic factor. Endocrinology 129, 1289–1294.

    Article  PubMed  CAS  Google Scholar 

  • Rye D. B., Saper C. B., and Wainer B. H. (1984) Stabilization of the tetramethylbenzidine (TMB) reaction product: application for retrograde and anterograde tracing, and combination with immununohistochemistry. J. Histochem. Cytochem. 32, 1145–1153.

    Article  PubMed  CAS  Google Scholar 

  • Sawchenko P. E. and Swanson L. W. (1981) A method for tracing biochemically defined pathways in the central nervous system using combined fluorescence retrograde transport and imunohistochemical techniques. Brain Res. 210, 31–51.

    Article  PubMed  CAS  Google Scholar 

  • Schaffner A. E., St. John P. A., and Barker J. L. (1987) Fluorescence-activated cell sorting of embryonic mouse and rat motoneurons and their longterm survival in vitro. Neurosci. 7, 3088–3104.

    CAS  Google Scholar 

  • Schiavo G., Ferrari G., Rossetto O., and Montecucco C. (1991) Tetanus toxin receptor. Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC12 cells. FEBS Lett. 290, 227–230.

    Article  PubMed  CAS  Google Scholar 

  • Schmued L. C. and Fallon J, H. (1986) Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res. 377, 147–154.

    Article  PubMed  CAS  Google Scholar 

  • Schwab M. and Thoenen H. (1977) Selective trans-synaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: a comparison with nerve growth factor. Brain Res. 122, 459–474.

    Article  PubMed  CAS  Google Scholar 

  • Schwab M. E. (1977) Ultrastructural localization of a nerve growth factorhorseradish peroxidase (NGF-HRP) coupling product after retrograde axonal transport in adrenergic neurons. Brain Res. 130, 190–196.

    Article  PubMed  CAS  Google Scholar 

  • Schwab M. E. and Thoenen H. (1983) Retrograde axonal transport, in Hand-book of Neurochemistry, vol. 5 (Lajtha A., ed.), Plenum, New York, pp. 381–404.

    Google Scholar 

  • Schwab M. E., Otten U., Agid Y., and Thoenen H. (1979) Nerve growth factor (NGF) in the rat CNS: absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res. 168, 473–483.

    Article  PubMed  CAS  Google Scholar 

  • Seiler M. and Schwab M. E. (1984) Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res. 300, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Shelton D. L. and Reichardt L. F. (1986) Studies on the expression of the bg nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proc. Natl. Acad. Ser. USA 83, 2714–2718.

    Article  CAS  Google Scholar 

  • Skirboll L., Hökfelt T., Norell G., Phillipson O., Kuypers H. G. J. M., Bentrvoglio M., Catsman-Berrevoets C. E., Visser T. J., Steinbusch H., Verhofstad A., Cuello A. C., Goldstein M., and Brownstein M. (1984) A method for specific transmitter identification of retrogradely labeled neurons: immunofluorescence combmed with fluorescence tracing. Brain Res. Rev. 8, 99–127.

    Article  CAS  Google Scholar 

  • Skirboll L. R., Thor K, Helke C, Hökfelt T., Robertson B., and Long R. (1989) Use of retrograde fluorescent tracers in combination with immunohrstochemical methods, in Neurounatomicul Tract-Tracing Methods 2 Progress Report (Heuser L. and Zaborszky L., eds.), Plenum, New York, pp. 5–18.

    Chapter  Google Scholar 

  • Smet P. J., Abrahamson I. R., Ressom R. E., and Rush R. A. (1991) A ciliary neuronotrophic factor from peripheral nerve and smooth muscle which is not retrogradely transported. Neurochem. Res. 16, 613–620.

    Article  PubMed  CAS  Google Scholar 

  • Snider W. D. (1988) Nerve growth factor enhance dendritic arbrization of sympathetic ganglion cells in developing mammals. J. Neurosci. 8, 2628–2634.

    PubMed  CAS  Google Scholar 

  • Sofromew M. V., Pearson R. C. A., and Powell T. P. S. (1987) The cholinergic nuclei of the basal forebrain of the rat: normal structure, development and experimentally induced degeneration, Brain Res. 411, 310–331

    Article  Google Scholar 

  • Soppet D., Escandon E., Maragos J., Middlemas D. S., Reid S. W., Blair J., Burton L. E., Stanton B. R., Kaplan D. R., Hunter T., Nikolics K. J., and Parada L. F. (1991) The neurotrophic factors brain-derived neurotrophine factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65, 895–903.

    Article  PubMed  CAS  Google Scholar 

  • Squinto S. P., Stitt T. N., Aldrich T. H., Davis S., Bianco S. M., Radziejewski C., Glass D. J,, Masiakowski P., Furth M. E., Valenzuela D. M., DiStefano P. S., and Yancopoulos G. D. (1991) trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 65, 885–893.

    Article  PubMed  CAS  Google Scholar 

  • Steward O. (1981) Horseradish peroxidase and fluorescent substances and their combination with other techniques, in Neuroanatomical Tract-Tracing Methods (Heimer L. and Robards M. J., eds.), Plenum, New York, pp. 279–310.

    Chapter  Google Scholar 

  • Stockel K., Schwab M., and Thoenen H. (1975) Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res. 99, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Swanson L. W. (1983) The use of retrogradely transported fluorescent markers in neuroanatomy, in Amtomicul Techniqes. Current Methods in Cellular Neurobiology, vol. 1 (Barker J. L. and McKelvy F., eds.) John Wiley & Sons, New York, pp. 219–240.

    Google Scholar 

  • Thanos S., Bahr M., Barde Y-A., and Vanselow J. (1989) Survival and axonal elongation of adult rat retinal ganglion cells. In vitro effects of lesioned sciatic nerve and brain derived neurotrophic factor. Eur. J. Neuroscz. 1, 19–26.

    Article  Google Scholar 

  • Thanos S., Vidal-Sanz M., and Aguayo A. J. (1987) The use of rhodamine-Bisothiocyanate (RITC) as an anterograde and retrograde tracer in the adult rat visual system. Brain Res. 406, 317–321.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H. (1991) The changing scene of neurotrophic factors. Trends Neuroscz. 14, 165–170.

    Article  CAS  Google Scholar 

  • Thoenen H. and Barde Y. A. (1980) Physiology of nerve growth factor. Physiol. Rev. 60, 1284–1335.

    PubMed  CAS  Google Scholar 

  • Thoenen H., Angeletti P., Levi-Montalcini R., and Kettler R. (1971) Selective induction of tyrosine hydroxylase and dopamme-β-hydroxylase in rat superior cervical ganglia by nerve growth factor. proc. Natl. Acad. Sci. USA 68, 1598–1602.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H., Auburger G., Hellweg R., Heumann R., and Korschmg S. (1987) Cholinergic innervation and levels of nerve growth factor and its mRNA in the central nervous system, in Cellular and Molecular Basis of Cholinergic Function (Dowdall M. J. and Hawthorne J. N., eds.), Ellis Horwood, Chichester, pp. 379–388.

    Google Scholar 

  • Thoenen H., Bandtlow C., and Heumann R. (1987) The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev. Physiol. Biochem. Pharmacol. 109, 145–178.

    Article  PubMed  CAS  Google Scholar 

  • Thomas S. M., DeMarco M., D’Arcangelo G., Halegoua S., and Brugge S. (1992) Ras is essential for nerve growth factorand phorbol esterinduced tyrosine phosphorylation of MAP kinases. Cell 68, 1031–1040.

    Article  PubMed  CAS  Google Scholar 

  • Thompson M. A. and Ziff E. B. (1989) Structure of the gene encoding peripherin, an NGF-regulated neuronal-specific type III intermediate filament protein. Neuron 2, 1043–1053.

    Article  PubMed  CAS  Google Scholar 

  • Tsukita S. and Ishikawa H. (1980) The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles. J. Cell Biol. 84, 513–530.

    Article  PubMed  CAS  Google Scholar 

  • Tuszynski M. H., Sang H., Yoshida K., and Gage F. H. (1991) Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann. Neural. 30, 625–636.

    Article  CAS  Google Scholar 

  • Tuszynski M., U H. S., Amaral D. G., and Gage F. H. (1990) Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J. Neurosa. 10, 3604–3614.

    CAS  Google Scholar 

  • Ugolini G., Kuypers H. G. J. M., and Simmon A. (1987) Retrograde transneuronal transfer of Herpes simplex virus type 1 (HSV 1) from motoneurones. Brain Res. 422, 242–256.

    Article  PubMed  CAS  Google Scholar 

  • Vallee R. B. and Bloom G. S. (1991) Mechanisms of fast and slow axonal transport. Annu. Rev. Neurosci. 14, 59–92.

    Article  PubMed  CAS  Google Scholar 

  • Verge V. M. K., Tetzlaff W., Bisby M. A., and Richardson P. M. (1990) Influence of nerve growth factor on neurofilament gene expression in mature primary sensory neurons. J. Neurosci. 10, 2018–2025.

    PubMed  CAS  Google Scholar 

  • Vetter M. L., Martin-Zanca D., Parada L. F., Bishop J. M., and Kaplan D. R. (1991) Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C-γ, by a kinase activity associated with the product of the trk protooncogene. Proc. Natl. Acad. Sci USA 88, 5650–5654.

    Article  PubMed  CAS  Google Scholar 

  • Vidal-Sanz M., Bray G. M., Villegas-Perez M. P, Thanos S., and Aguayo A. J. (1987) Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J. Neurosci. 7, 2894–2909.

    PubMed  CAS  Google Scholar 

  • Villegas-Peréz M. P., Vidal-Sanz M., Bray G. M., and Aguayo A. J. (1988) Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. J. Neurosci. 8, 265–280.

    PubMed  Google Scholar 

  • Vinken P. J. and Bruyn G. W. (1991) Leucodystrophies and Poliodystrophies, Handbook of Clinical Neurolgy, vol. 10. North-Holland, Amsterdam.

    Google Scholar 

  • Warr W. B., de Olmos J. S., and Hemmer L. (1981) Horseradish peroxidase. the basic procedure, in Neurounatomical Tract-Tmcrng Methods (Heimer L. and Robards M. J., eds.), Plenum, New York, pp. 207–262.

    Chapter  Google Scholar 

  • Wayne D. B. and Heaton M. B. (1988) Retrograde transport of NGF by early chick embryo spmal cord motoneurons. Dev. Biol. 127, 220–223.

    Article  PubMed  CAS  Google Scholar 

  • Williams L. R., Varon S., Peterson G. M., Wictorm R., Fischer W., Bjorklund A., and Gage F. H. (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria forinx transection. Proc. Natl. Acad. Sci USA 83, 9231–9235.

    Article  PubMed  CAS  Google Scholar 

  • Wood K. W., Sarnecki C., Roberts T. M., and Blenis J. (1992) ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases, MAP kinase, Raf-1, and RSK. Cell 68, 1041–1050.

    Article  PubMed  CAS  Google Scholar 

  • Woodward W. R., Nishi R., Neshul C. R., Williams T. E., Coulombe M., and Eckenstein F. P (1992) Nuclear and cytoplasmic localization of basic frbroblast growth factor in astrocyte and CA2 hrppocampal neurons. J. Neurosci. 12, 142–152.

    PubMed  CAS  Google Scholar 

  • Yan Q., Elliott J., and Snider W. D. (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotonomy-induced cell death. Nature 360, 753–755.

    Article  PubMed  CAS  Google Scholar 

  • Yan Q., Snider W. D., Pinzone J. J., and Johnson E. M., Jr. (1988) Retrograde transport of nerve growth factor (NGF) in motoneurons of developing rats, assessment of potential neurotrophic effects. Neuron 1, 335–343.

    Article  PubMed  CAS  Google Scholar 

  • Yankner B. A. and Shooter E. M. (1979) Nerve growth factor in the nucleus: mteraction with receptors on the nuclear membrane. Proc. Natl. Acad. Sci. USA 76, 1269–1273.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press IncThe Humana Press Inc.

About this protocol

Cite this protocol

Koliatsos, V.E., Price, D.L. (1993). Retrograde Axonal Transport. In: Boulton, A.A., Baker, G.B., Hefti, F. (eds) Neurotrophic Factors. Neuromethods, vol 25. Humana Press, Totowa, NJ. https://doi.org/10.1385/0-89603-249-3:247

Download citation

  • DOI: https://doi.org/10.1385/0-89603-249-3:247

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-249-1

  • Online ISBN: 978-1-59259-630-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics