Nonhuman Primate Models in Trophic Factor Research

Part of the Neuromethods book series (NM, volume 25)


Nonhuman primates are essential experimental models for research dealing with trophic factors, particularly regarding the effects of these factors on higher cognitive functions, including memory. These animals have several advantages over rodents. First, these species are our closest relatives, and many features of nonhuman primate behavior and brain biology closely resemble those identified in humans. Second, available evidence indicates that the pharmacokinetics of psychotrophic drugs is similar between humans and monkeys—a major reason why monkeys are so popular in studies of behavioral pharmacology. Third, the clinical and pathological manifestations of naturally occurring or experimentally induced disorders in nonhuman primates resemble more closely the features of human disorders than do homologous disorders in nonprimate species. For example, although intoxication with l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes motoric abnormalities in mice associated with dysfunction of the nigrostriatal system (Chiueh et al., 1984; Hallman et al., 1984; Heikkila et al., 1984; Mayer et al., 1986; Gupta and Gupta,1988; Mori et al., 1988; Date et al., 1990), only primates, and especially the African green monkey, exhibit the full manifestations of Parkinsonism (Burns et al., 1983; Langston et al., 1984; Bankiewicz et al., 1986; LangstonJ987; DeLongl990). Similarly, although aged rats exhibit memory impairments (Gallagher and Burwell,1989; Markowska et al., 1989; Gallagher et al., 1990; Olton et al., 1991) and some alterations in certain populations of neurons in the brain (Hornberger et al., 1985; Luine et al., 1986; Mesulam et al., 1987; Fischer et al., 1989; Koh et al., 1989; Altavista et al., 1990), only aged monkeys develop the complex behavioral problems similar to those that occur in aged humans and, to a much greater extent, patients with Alzheimer’s disease (AD) (Price et al., 1991a). Thus, the more closely the behavioral and brain abnormalities resemble those that occur in humans, the greater the potential of the animal model for understanding processes relevant to human disease. The above reasons raise the question regarding to what extent primate models need to be examined before considering trophic factor therapies for human neurological diseases. For example, in the fall of 1989, an ad hoc committee convened at the National Institute on Aging to evaluate the potential of nerve growth factor (NGF) to treat certain symptoms of patients with AD (Phelps et al., 1989). This committee set a series of prerequisites to be met before small-scale NGF clinical trials could be considered. A major precondition included evidence of the efficacy of NGF on nonhuman primate models.


Nerve Growth Factor Cholinergic Neuron Basal Forebrain Trophic Factor Nonhuman Primate Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abercrombie M. (1946) Estimation of nuclear population from microtome sections. Anat. Rec. 94, 239–247.PubMedCrossRefGoogle Scholar
  2. Abraham C. R., Selkoe D. J., Potter H., Price D.L., and Cork L. C. (1989) α1-antichymotrypsin is present together with the-protein in the monkey brain amyloid deposits. Neuroscience 32 715–720.PubMedCrossRefGoogle Scholar
  3. Altavista M. C., Rossi P., Bentivoglio A. R, Crociain P., and Albanese A. (1990) Aging is associated with a diffuse impairment of forebrain cholinergic neurons. Brain Res. 508, 51–59.PubMedCrossRefGoogle Scholar
  4. Applegate M. D., Kohatsos V.E., and Price D. L. (1989) Extended survival of medial septal cholinergic neurons following lesion of the fimbria-fornix. Soc. Neurosci. Abstr. 15, 408.Google Scholar
  5. Ator N. A. (1991) Subjects and instrumentation, in Experimental Analysts of Behavior Part 1 (Iversen I. H. and Lattal K.A., eds.) Elsevier Science Publishers, Amsterdam, pp. 1–62.Google Scholar
  6. Bachevaher J., Landis L. S., Walker L. C., Brickson M., Mishkin M., Price D.L., and Cork L. C. (1991) Aged monkeys exhibit behavioral deficits indicative of widespread cerebral dysfunction. Neurobiol. Aging 12, 99–111.CrossRefGoogle Scholar
  7. Bankiewicz K. S., Oldfield E. H., Chiueh C. C., Doppman J. L., Jacobowitz D.M., and Kopin I. J. (1986) Hemiparkinsonism in the monkeys after unilateral internal carotid artery infusion of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Life Sci. 39, 7–16.PubMedCrossRefGoogle Scholar
  8. Barde Y.-A. (1989) Trophic factors and neuronal survival. Neuvon 2, 1525–1534.Google Scholar
  9. Barde Y.-A. (1988) What, if anything is a neurotrophic factor? Trends Neurosci. 11, 343–346.PubMedCrossRefGoogle Scholar
  10. Bamett J., Baecker P., Routledge-Ward C., Bursztyn-Pettegrew H,, Chow J., Nguyen B., Bach C., Chan H., Tudzynski M. H., Yoshida K., Rubalcava R., and Gage F. H. (1990) Human β nerve growth factor obtained from a baculovirus expression system has potent in vitro and in vivo neurotrophic activity. Exp. Neural. ll0, 11–24.Google Scholar
  11. Bartus R. T., Dean R.L., and Beer B. (1983) An evaluation of drugs for improving memory in aged monkeys, implications for clinical trials in humans, Psychopharmacol. Bull. 19, 168–184.PubMedGoogle Scholar
  12. Bartus R. T., Dean R.L.III, and Fleming D. L. (1979) Aging in the rhesus monkey, effects on visual discrimination learning and reversal learnmg. J. Gerontol. 34, 209–219.PubMedCrossRefGoogle Scholar
  13. Bartus R. T., Fleming D., and Johnson H. R. (1978) Aging in the rhesus monkey, debilitating effects on short-term memory. J. Gerontol. 33, 858–871.PubMedCrossRefGoogle Scholar
  14. Bartus R.T. (1979) Physostrgmme and recent memory, effects in young and aged nonhuman primates. Science 206, 1087–1089.PubMedCrossRefGoogle Scholar
  15. Beck K. D., Knusel B., Wmslow J, W., Rosenthal A., Burton L. E., Nikolics K., and Hefti F. (1992) Pretreatment of dopaminergic neurons III culture with brain-derived neurotrophic factor attenuates toxrcity of l-methyl-4-phenylpyridinmm. Neurodegeneration 1, 27–36.Google Scholar
  16. Berger B., Gaspar P., and Verney C. (1991) Dopaminergic innervation of the cerebral cortex, unexpected differences between rodents and primates. Trends Neuroscz. 14, 21–27.CrossRefGoogle Scholar
  17. Brashear H. R., Zaborszky L., and Heimer L. (1986) Distribution of GABAergic and cholinergic neurons in the rat diagonal band. Neuroscience 17, 439–451.PubMedCrossRefGoogle Scholar
  18. Brewster M.E. (1989) Noninvasive drug delivery to the brain. Neurobiol. Aging 10, 638,639.CrossRefGoogle Scholar
  19. Brightman M.W. (1965) The distribution within the brain of ferntin injected into cerebrospinal fluid compartments. II. Parenchymal distrrbution. Am. J Anat. 117, 193–220.PubMedCrossRefGoogle Scholar
  20. Bums R. S., Chiueh C. C., Markey S. P., Ebert M. H., Jacobowitz D. M., and Kopin I.J. (1983) A primate model of Parkinsoinsm: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-Cphenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 80, 4546–4550.CrossRefGoogle Scholar
  21. Chandler C. E., Parsons L. M., Hosang M., and Shooter E. M. (1984) A monoclonal antibody modulates the mteraction of nerve growth factor with PC12 cells. J, Blol. Chem. 259, 6882–6889.Google Scholar
  22. Chiueh C. C., Markey S. P., Bums R. S., Johannessen J. N., Pert A., and Kopin I.J. (1984) Neurochemical and behavioral effects of systemic and intranigral administration of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the rat. Eur. J. Pharmacol. 100, 189–194.PubMedCrossRefGoogle Scholar
  23. Clarke P.G.H. (1990) Developmental cell death, morphological diversity and multiple mechanisms. Anat. Embryol. 181, 195–213.PubMedCrossRefGoogle Scholar
  24. Cole G. M., Huynh T.V., and Saitoh T. (1989) Evidence for lysosomal processing of amyloid β-protein precursor in cultured cells. Natrochem. Res. 14, 933–939.CrossRefGoogle Scholar
  25. Coleman P.D. and Flood D. G. (1987) Neuron numbers and dendritic extent in normal aging and Alzhenner’s disease. Neurobiol. Aging 8, 521–545.PubMedCrossRefGoogle Scholar
  26. Coombs J. S., Curtis D.R., and Eccles J. C, (1957) The interpretation of spike potentials of motoneurones.J. Physiol. 139, 198–231.PubMedGoogle Scholar
  27. Cork L. C., Master C., Beyreuther K., and Price D. L. (1990) Development of senile plaques. Relationships of neuronal abnormalities and amyloid deposits. Am. J. Pathol. 137, 1383–1392.PubMedGoogle Scholar
  28. Dalgard D. W., Hardy R. J., Pearson S. L., Pucak G. J., Quander R. V., Zack P. M., Peters C.J., and Jahrlmg P. B. (1992) Combined simian hemorrhagic fever and Ebola virus infection in cynomolgus monkeys. Lab. An. Sci. 42, 152–157.Google Scholar
  29. D’Amato R. J., Alexander G. M., Schwartzman R. J., Kitt C. A., Price D.L., and Snyder S.H. (1987) Evidence for neuromelanin involvement in MPTP-induced neurotoxicity. Nature 327, 324–326.PubMedCrossRefGoogle Scholar
  30. Date I., Notter M. F. D., Felten S.Y., and Felten D. L. (1990) MPTP-treated young mice but not aging mice show partial recovery of the nigrostriatal dopaminergic system by stereotaxic injection of acidic f ibroblast growth factor (aFGF). Brain Res. 526, 156–160.PubMedCrossRefGoogle Scholar
  31. DeLong M.R. (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 13, 281–285.PubMedCrossRefGoogle Scholar
  32. Dunnett S.B. (1990) Neural transplantation in animal models of dementia. Eur. J. Neuroscr. 2, 567–587.CrossRefGoogle Scholar
  33. Eckenstem F. and Baughman R. W. (1984) Two types of cholinergic innervation in cortex, one co-localized with vasoactive mtestinal polypeptide Nature 309, 153–155.CrossRefGoogle Scholar
  34. Eckenstem F. and Thoenen H. (1983) Cholinergic neurons in the rat cerebral cortex demonstrated by immunohistochemical localization of choline acetyltransferase. Neurosa. Lett. 36, 211–215.CrossRefGoogle Scholar
  35. Ernfors P., Ibez C. F, Ebendal T., Olson L., and Persson H. (1990) Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain. Proc. Natl. Acad. Sci. USA 87, 5454–5458PubMedCrossRefGoogle Scholar
  36. Fenstermacher J. and Kaye T. (1988) Drug “diffusion” within the brain. Ann. NY Acad. Sci 531, 29–39.PubMedCrossRefGoogle Scholar
  37. Fischer W., Blbrklund A., Chen K., and Gage F. H. (1991) NGF improves spatial memory in aged rodents as a function of age J. Neuroscz. 11, 1889–1906.Google Scholar
  38. Fischer W., Gage F.H., and Bjbrklund A. (1989) Degenerative changes in forebrain cholinergrc nuclei correlate with cogintive impairments in aged rats. Eur.J. Neurosci. 1, 34–45.PubMedCrossRefGoogle Scholar
  39. Fischer W., Wictorin K., Bjorklund A., Williams L. R., Varon S., and Gage F.H. (1987) Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329, 65–68.PubMedCrossRefGoogle Scholar
  40. Fleischman C. A., Gustilo M. C., Markowska A. L., Gorman L. K., Burton L. E., Olton D. S., Price D.L., and Koliatsos V. E. (1992) Human nerve growth factor (NGF) selectively improves spatial memory deficits in aged rats via stimulation of the basal forebrain cholinergic system (BFCS). Sot. Neurosci. Abstr. 18, 415.Google Scholar
  41. Gage F.H. and Buzsáki G. (1988) CNS grafting: potential mechanisms of action, in Neural Regeneration and Transplantation. Frontiers of Clinical Neuroscience, vol. 6 (Seil F.J., ed.) Alan R. Liss, New York, pp. 211–226.Google Scholar
  42. Gage F. H., Armstrong D. M., Williams L.R., and Varon S. (1988) Morphological response of axotomized septal neurons to nerve growth factor. J. Comp. Neural. 269, 147–155.CrossRefGoogle Scholar
  43. Gage F. H., Kawaja M.D., and Fisher L. J. (1991) Genetically modified cells, applications for intracerebral grafting. Trends Neurosci. 14, 328–333.PubMedCrossRefGoogle Scholar
  44. Gallagher M. and Burwell R. D. (1989) Relationship of age-related decline across several behavioral domains. Neurobiol. Aging 10, 691–708.PubMedCrossRefGoogle Scholar
  45. Gallagher M., Burwell R. D., Kodsi M. H., McKinney M., Southerland S., Vella-Rountree L., and Lewis M. H. (1990) Markers for biogenic amines m the aged rat brain: relationship to decline in spatial learning ability. Neurobiol. Aging 11, 507–514.PubMedCrossRefGoogle Scholar
  46. Gouras G K., Koliatsos V.E., and Price D. L. (1990) Differential expression of nerve growth factor receptor in different subclasses of basal forebrain magnocellular neurons. Sot. Neurosci. Abstr. 16, 482.Google Scholar
  47. Gupta M. and Gupta B. K. (1988) Aged mice show more severe motor deficits and morphological changes following MPTP treatment than their younger counterparts. Ann. NY Acad. Sci. 515, 421–423.CrossRefGoogle Scholar
  48. Hagg T., Fass-Holmes B., Vahlsing H. L., Manthorpe M., Conner J. M., and Varon S. (1989a) Nerve growth factor (NGF) reverses axotomy-induced decreases in choline acetyltransferase, NGF receptor and size of medial septum cholmergrc neurons. Bruin Res. 505, 29–38.CrossRefGoogle Scholar
  49. Hagg T., Hagg F., Vahlsing H. L., Manthorpe M., and Varon S. (1989b) Nerve growth factor effects on cholinergic neurons of neostriatum and nucleus accumbens in the adult rat. Neurosczence 30, 95–103.CrossRefGoogle Scholar
  50. Hagg T., Manthorpe M., Vahlsing H.L., and Varon S. (1988) Delayed treatment with nerve growth factor reverses the apparent loss of cholinergic neurons after acute brain damage. Exp. Neural. 101, 303–312.CrossRefGoogle Scholar
  51. Hallbaok F., Ibáñez C.F., and Persson H. (1991) Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6, 845–858.CrossRefGoogle Scholar
  52. Hallman H., Olson L., and Jonsson G. (1984) Neurotoxicity of the meperidine analogue N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on brain catecholamine neurons i the mouse. Eur. J Pharmacol. 97, 133–136.PubMedCrossRefGoogle Scholar
  53. Harbaugh R.D. (1989a) Novel CNS-directed drug delivery systems in Alzheimer’s disease and other neurological disorders. Author’s response to commentaries. Neurobiol. Aging 10, 648–650.CrossRefGoogle Scholar
  54. Harbaugh R.D. (1989b) Novel CNS-directed drug delivery systems in Alzheimer’s disease and other neurological disorders. Neuroblol. Aging 10, 623–429.CrossRefGoogle Scholar
  55. Hefti F. (1986) Nerve growth factor promotes survival of septal cholinerglc neurons after fimbrial tnsections. J. Neurosci. 6, 2155–2162.PubMedGoogle Scholar
  56. Heikkila R. E., Hess A., and Duvoisin R. C. (1984) Dopaminergic neurotoxicity of l-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Sczence 224, 1451–1453.CrossRefGoogle Scholar
  57. Heilbroner I’.L. and Kemper T. L. (1990) The cytoarchitectomc distribution of senile plaques in three aged monkeys. Actu Neuropathof. 81, 60–65.CrossRefGoogle Scholar
  58. Heruth K.T. (1988) Medtronic SynchroMed drug administration system. Ann. NYAcad. Sci. 531, 72–75.CrossRefGoogle Scholar
  59. Hohn A., Liebrock J., Bailey K., and Barde Y.-A. (1990) Identification and characterization of a novel member of the nerve growth factor/bramderived neurotrophic factor family. Nature 344, 339–341.PubMedCrossRefGoogle Scholar
  60. Hornberger J. G, Buell S. J., Flood D. G., McNeill T.H., and Coleman P. D. (1985) Stability of numbers but not size of mouse forebrain cholinergic neurons to 53 months. Neurobd. Aging 6, 269–275.CrossRefGoogle Scholar
  61. Hubel D. H. (1991) Are we willing to fight for our research? Annu. Rev Neurosci. 14, 1–8.PubMedCrossRefGoogle Scholar
  62. Hyman C., Hofer M., Barde Y.-A., Juhasz M., Yancopoulos G. D., Squinto S. P., and Lmdsay R. M. (1991) BDNF is a neurotrophic factor for dopaminergic neurons of the substantia mgra. Nature 350, 230–232.PubMedCrossRefGoogle Scholar
  63. Ibáñez C. F., Ebendal T., Barbany G., Murray-Rust J., Blundell T. L., and Persson H. (1992) Disruption of the low affinty receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product. Cell 69, 329–341.PubMedCrossRefGoogle Scholar
  64. Irwm I., DeLanney L. E., Forno L. S., Finnegan K. T., DiMonte D. A., and Langston J.W. (1990) The evolution of nigrostriatal neurochemical changes in the MMTP-treated squirrel monkey. Brain Res. 531, 242–252.CrossRefGoogle Scholar
  65. Javitch J. A., D’Amato R. J., Strittmatter S.M., and Snyder S. H. (1985) Parkorm-inducing neurotoxin N-methyl-C-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. USA 82, 2173–2177PubMedCrossRefGoogle Scholar
  66. Johnston J., Reich S., Bailey A., and Sluetz J. (1988) Shiley Infusaid pump technology. Ann. NγAcad. Sci 531, 57–65.CrossRefGoogle Scholar
  67. Kitt C A., Cork L. C., Eidelberg E., Joh T.H., and Price D. L (1986) Injury of nigral neurons exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridme, a tyrosine hydroxylase immunocytochemical study in monkey. Neuroscience 17, 1089–1103.PubMedCrossRefGoogle Scholar
  68. Knusel B., Winslow J, W., Rosenthal A., Burton L. E., Seid D. P., Nicolics K., and Hefti (1991) Promotion of central cholinergic and dopaminergic nuron differentiation by brain-derived neurotrophic factor but not neurotrophm 3. Proc. Natl. Acad. Sci. USA 88, 961–965.PubMedCrossRefGoogle Scholar
  69. Koh S., Chang I’., Collier T.J., and Loy R. (1989) Loss of NGF receptor immunoreactivity in basal forebrain neurons of aged rats, correlation with spatial memory impairment. Brain Res. 498, 397–404.PubMedCrossRefGoogle Scholar
  70. Koliatsos V. E., Applegate M. D., Kitt C. A., Walker L. C., DeLong M. R., and Price D.L. (1989) Aberrant phosphorylation of neurofilaments accompanies transmitter-related changes in the rat septal neurons followmg transection of the fimbria-fornix. Brazn Res. 482, 205–218.CrossRefGoogle Scholar
  71. Koliatsos V. E., Applegate M. D., Knusel B., Junard E. O., Burton L. E., Mobley W.C., Hefti F.F., and Price D. L. (1991a) Recombinant human nerve growth factor prevents retrograde degeneration of axotomized basal forebrain cholinergic neurons in the rat. Exp. Neurof. 112, 161–173.CrossRefGoogle Scholar
  72. Koliatsos V. E., Clatterbuck R. E., Nanta H. J. W., Knusel B., Burton L. E., Hefti F. F., Mobley W.G, and Price D. L. (1991b) Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann. Neurol. 30, 831–840.PubMedCrossRefGoogle Scholar
  73. Koliatsos V. E., Martin L.J., and Price D. L. (1990a) Efferent organization of the mammalian basal forebrain, in Brain Chohnergic Systems (Steriade M. and Biesold D., eds.) Oxford University Press, Oxford, pp. 120–152.Google Scholar
  74. Koliatsos V. E., Nauta H. J, W., Clatterbuck R. E., Holtzman D. M., Mobley W.C., and Price D. L. (1990b) Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey. J. Neurosci. 10, 3801–3813.PubMedGoogle Scholar
  75. Koliatsos V. E., Shelton D. L., Mobley W.C., and Price D. L. (1988) A novel group of nerve growth factor receptor-immunoreactive neurons in the ventral horn of the lumbar spinal cord. Brain Res. 541, 121–128.CrossRefGoogle Scholar
  76. Koning G. and Feith F. (1988) A new implantable drug delivery system for patient-controlled analgesia. Ann. Nγ Acad. Sci. 531, 48–56.CrossRefGoogle Scholar
  77. Kordower J.H. and Mufson E. J. (1990) Galanin-like imrnunoreactivity withim the primate basal forebrain: differential staining patterns between humans and monkeys. J. Comp. Neurol. 294, 281–292.PubMedCrossRefGoogle Scholar
  78. Kromer L.F. (1987) Nerve growth factor treatment after brain injury prevents neuronal death. Science 235, 214–216.PubMedCrossRefGoogle Scholar
  79. Langer R., Brem H., and Langer L. F. (1989) New directions in CNS drug delivery. Neurobrol. Aging 10, 642–644.CrossRefGoogle Scholar
  80. Langston J.W. (1987) MPTP: the promise of a new neurotoxin, in Movement Disorders 2 (Marsden C.D. and Fahn S., eds.) Butterworths, London, pp. 73–90.Google Scholar
  81. Langston J. W., Ballard I’., Tetrud J.W., and Irwin I. (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219, 979,980.CrossRefGoogle Scholar
  82. Langston J. W., Fomo L. S., Rebert C.S., and Irwm I. (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brutn Res. 292, 390–394.CrossRefGoogle Scholar
  83. Leibrock J., Lottspeich F., Hohn A., Hofer M., Hengerer B., Masiakowski P., Thoenen H., and Barde Y.-A. (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341, 149–152.PubMedCrossRefGoogle Scholar
  84. Lindvall O., Backlund E-O., Farde L., Sedvall G., Freedman R., Hoffer B., Nobin A., Seiger Å., and Olson L. (1987) Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann. Neurol. 22, 457–468.PubMedCrossRefGoogle Scholar
  85. Lord P., Allami H., Davis M., Diaz R., Heck I’., and Fhell R.(1988) Minimed technologies programmable implantable infusion system. Ann. Nγ Acad. Sci. 531, 66–71.CrossRefGoogle Scholar
  86. Luine V. N., Renner K. J., Heady S., and Jones K. J. (1986) Age and sexdependent decreases in ChAT in basal forebrain nuclei. Neurobiof. Agmg 7, 193–198.CrossRefGoogle Scholar
  87. Maisonpierre P. C., Belluscio L., Squmto S., Ip N. Y., Furth M. E., Lindsay R. M., and Yancopoulos G. D. (1990a) Neurotrophm-3: a neurotrophic factor related to NGF and BDNF. Sczence 247, 1446–1451.CrossRefGoogle Scholar
  88. Maisonpierre P. C., Belluscio L., Friedman B., Alderson R. F., Wiegand S. J., Furth M. E., Lindsay R. M., and γancopoulos G. D. (1990b) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5, 501–509.PubMedCrossRefGoogle Scholar
  89. Marano N., Dietzschold B., Earley J. J. Jr., Schatteman G., Thompson S., Grob I’., Ross A. H., Bothwell M., Atkmson B. F., and Koprowski H. (1987) Purification and amino terminal sequencing of human melanoma nerve growth factor receptor. J. Neurochem. 48, 225–232.PubMedCrossRefGoogle Scholar
  90. Markowska A. L., Stone W. S., Ingram D. K., Reynolds J., Gold I’ E., Conti L.H., Pontecorvo M. J., Wenk G.L., and Olton D. S. (1989) Individual differences in aging: behavioral and neurobiological correlates. Neurobiol. Aging 10, 31–43.PubMedCrossRefGoogle Scholar
  91. Mayer R. A., Walters A.S., and Heikkila R. E. (1986) 1-Methyl-4-phenyl-1,2,3,6,tetrahydropyridine (MPTP) administrahon to C57-black mice leads to parallel decrements in neostriatal dopamine content and tyrosine hydroxylase activity. Eur. J. Pharmacol. 120, 375–377.PubMedCrossRefGoogle Scholar
  92. Melander T. and Staines W. A. (1986) A galarun-like pepude coexists in putative cholinergic somata of the septum-basal forebrain complex and in acetylcholinesterase containmg fibers and varicosities withm the hippocampus in the owl monkey (Aotus trzzwgutus). Neurosci. Lett. 6, 17–22.CrossRefGoogle Scholar
  93. Mesulam M.-M., Mufson E.J., and Rogers J. (1987) Age-related shrinkage of cortically projecting cholinergic neurons: a selective effect. Ann. Neural. 22, 31–36.CrossRefGoogle Scholar
  94. Mesulam M.-M., Mufson E. J., Levey A.I., and Warner B. H. (1983a) Cholinergic innervation of cortex by the basal forebram: cytochemistry and cortical connections of the septal area diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neural. 214, 170–197.CrossRefGoogle Scholar
  95. Mesulam M-. M., Mufson E.J., Wainer B. H., and Levey A. I. (1983b) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Chl-Chb). Neuroscience 10, 1185–1201.PubMedCrossRefGoogle Scholar
  96. Mobley W. C., Woo J. E., Edwards R. H., Riopelle R. J., Lox-go F. M., Weskamp G., Otten U., Valletta J. S., and Johnston M. V. (1989) Developmental regulation of nerve growth factor and its receptor in the rat caudateputamen. Neuron 3, 655–664.PubMedCrossRefGoogle Scholar
  97. Mori S., Fujitake J., Kuno S., and Sano Y. (1988) Immunohistochemical evaluation of the neurotoxic effects of 1-methyl-Cphenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopaminergic nigrostriatal neurons of young adult mice using dopamine and tyrosine hydroxylase antlbodies. Neurosa. Mt. 90, 57–62.CrossRefGoogle Scholar
  98. O’Brein T. S., Svendsen C. N., Isacson O., and Sofromew M. V. (1990) Loss of true blue labellmg from the medial septum following transection of the fimbria-fornix: evidence for the death of cholinergic and noncholinergic neurons. Brarn Res. 508, 249–256.CrossRefGoogle Scholar
  99. Olton D. S., Markowska A. L., Koliatsos V., Henshaw R., Since S., Burton L. E., and Price D. (1992) Behavioral effects of nerve growth factor (NGF) in both young and aged rats. Sot. Neurosci. Abstr. 18, 415.Google Scholar
  100. Olton D. S., Markowska A., Breckler S. J., Wenk G. L., Pang K. C., and Koliatsos V. (1991) Individual differences in aging: behavioral and neural analyses. Blamed. Environ. Sci. 4, 166–172.Google Scholar
  101. Parent A., Poitras D., and Dub L. (1984) Comparative anatomy of central monoaminergic systems, in Classrcal Transmztters in the CNS, Part I, Handbook of Chemical Neuroanatomy, vol. 2 (Björklund A. and Hokfelt T., eds.) Elsevier, Amsterdam, pp. 409–439.Google Scholar
  102. Peterson C. M. (1989) Sustained and controlled release of neuroactive substances in the CNS by encapsulation into implantable polymers. Neuroblol. Aging 10, 639,640.Google Scholar
  103. Petrides P. E., and Shooter E. M. (1986) Rapid isolation of the 7S-nerve growth factor complex and its subunits from murine submaxillary glands and saliva. J. Neurochem. 46, 721–725.PubMedCrossRefGoogle Scholar
  104. Phelps C. H., Gage F. H., Growdon J. H., Hefti F., Harbaugh R., Johnston M. V., Khachaturian Z., Mobley W., Price D., Raskind M., Simpkins J., Thai L., and Woodcock J. (1989) (Ad hoc working group on nerve growth factor and Alzheimer’s disease). Potential use of nerve growth factor to treat Alzheimer’s disease. Science 243, 11.Google Scholar
  105. Powell E. M., Sobarzo M. R., and Saltzman W. M. (1990) Controlled release of nerve growth factor from a polymeric implant. Brazn Res. 515, 309–311.CrossRefGoogle Scholar
  106. Presty S. K., Bachevalier J., Walker L. C., Struble R. G., Price D. L., Mishkin M., and Cork L. C. (1987) Age differences in recognition memory of the rhesus monkey (Macaca mulatta). Neurobrol. Agmg 8, 435–440.Google Scholar
  107. Price D. L., Koliatsos V. E., Gouras G. K., Burton L. E., Winslow J. W., and Nikolics K. (1991a) Highly selective effects of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin3 (NT-3) on neurons of the basal nucleus complex (BNC). Sot. Neurosci. Abstr. 17, 751.Google Scholar
  108. Price D. L., Martin L. J., Sisodia S. S., Wagster M. V., Koo E. H., Walker L. C., Koliatsos V. E., and Cork L. C. (1991b) Aged nonhuman primates: an animal model of age-associated neurodegenerative disease. Bruin Pathof. 1, 287–296.CrossRefGoogle Scholar
  109. Rapp P. R. and Amaral D. G. (1989) Evidence for task-dependent memory dysfunction in the aged monkey. J. Neurosci. 9, 3568–3576.PubMedGoogle Scholar
  110. Rapp P. R. and Amaral D. G. (1991) Recognition memory deficits in a subpopulation of aged monkeys resemble the effects of medial temporal lobe damage. Neurobd. Aging 12, 481–486.CrossRefGoogle Scholar
  111. Ridley R. M. and Baker H. F. (1991) Can fetal neural transplants restore function in the monkeys with lesion-induced behavioral deficits? Trends Neurosci. 14, 366–370.PubMedCrossRefGoogle Scholar
  112. Rosenberg M.B., Friedmann T., Robertson R. C., Tudzynski M., Wolff J. A., Breakefield X. O., and Gage F. H. (1988) Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 242, 1575–1578.PubMedCrossRefGoogle Scholar
  113. Rosenthal A., Goeddel D. V., Nguyen T., Lewis M., Shih A., Laramee G. R., Nikolics K., and Winslow J. W. (1990) Primary structure and biological activity of a novel human neurotrophic factor. Neuron 4, 767–773.PubMedCrossRefGoogle Scholar
  114. Rosenthal A., Goeddel D. V., Nguyen T., Martin E., Burton L. E., Shih A., Laramee G. R., Wurm F., Mason A., Nikohcs K., and Winslow J. W. (1991) Primary structure and brological activity of human brainderived neurotrophic factor. Endocrinology 129, 1289–1294.PubMedCrossRefGoogle Scholar
  115. Selkoe D. J., Bell D. S., Podhsny M.B., Price D. L., and Cork L. C. (1987) Conservation of brain amyloid proteins in aged mamiumals and humans with Alzhermer’s disease. Science 235, 873–877.PubMedCrossRefGoogle Scholar
  116. Sladek J. R., Jr. and Shoulson I. (1988) Neural transplantation: a call for patience rather than patients. Science 240, 1386–1388.PubMedCrossRefGoogle Scholar
  117. Snider W. D. and Johnson E. M., Jr. (1989) Neurotrophic molecules. Ann. Neural. 26, 489–506.CrossRefGoogle Scholar
  118. Springer J. E. (1989) The use of hollow polymer fibers for the delivery of bioactive molecules to the bram. Neurobiol. Agmg 10, 640,641.Google Scholar
  119. Stromberg I., Wetmore C. J., Ebendal T., Emfors P., Persson H., and Olson L. (1990) Rescue of basal forebrain cholinergic neurons after inplantation of genetically modified cells producmg recombmant NGF. J. Neurosci. Res. 25, 405–411.PubMedCrossRefGoogle Scholar
  120. Struble R. G., Cork L. C., Whitehouse P. J., and Price D L. (1982) Chohnergic mnervation in neuritic plaques. Sczence 216, 413–415.CrossRefGoogle Scholar
  121. Struble R. G., Powers R. E., Casanova M. F., Kitt C. A., Brown E. C., and Price D. L. (1987) Neuropeptidergic systems in plaques of Alzherrner’s disease. J. Neuropathol. Exp. Neural. 46, 567–584.CrossRefGoogle Scholar
  122. Struble R. G., Price D. L, Jr., Cork L. C., and Price D. L. (1985) Senile plaques in cortex of aged normal monkeys. Bram Res. 361, 267–275.CrossRefGoogle Scholar
  123. Swanson L. W., Kohler G, and Bjorklund A. (1987) The limbic region, I: the septohippocampal system, in Integrated Systems of fhe CNS, Parf I. Hypothalamus Amygala Retina. Handbook of Chemical Neuroanatomy, vol. 5 (Björklund A., Hokfelt T., and Swanson L. W., eds.) Elsevier, Amsterdam, pp, 125–277.Google Scholar
  124. Thoenen H. (1991) The changing scene of neurotrophic factors, Trends Neurosci. 14, 165–170.PubMedCrossRefGoogle Scholar
  125. Tigges J., Gordon T. P., McClure H. M., Hall E. C., and Peters A. (1988) Survival rate and life span of rhesus monkeys at the Yerkes Regional Primate Research Center. Am. J. Prtmatol. 15, 263–273.CrossRefGoogle Scholar
  126. Tuszynski M. H. U H. S., Amaral D. G., and Gage F. H. (1990a) Nerve growth factor infusion m the primate brain reduces lesion-induced cholinergic neuronal degeneration. J. Neurosci. 10, 3604–3614.PubMedGoogle Scholar
  127. Tuszynski M. H., Armstrong D. M., and Gage F. H. (1990b) Basal forebrain cell loss following fimbria/fomix transection. Bram Res. 508, 241–248.CrossRefGoogle Scholar
  128. Tuszynsli M.H., Sang H., Yoshida K., and Gage F. H. (1991) Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann. Neural. 30, 625–636.CrossRefGoogle Scholar
  129. Wagster M. V., Cork L. C., and Price D. L. (1991) Age-related changes in glutamatergic receptor binding in rhesus monkey brain. Sot. Neurosn. Absfr. 17, 368.Google Scholar
  130. Walker L. C., Kitt C. A., Cork L. C., Struble R. G., Dellovade T. L., and Price D. L. (1988a) Multiple transmitter systems contribute neurites to individual senile plaques. J. Neuropathol. Exp. Neural. 47, 138–144.CrossRefGoogle Scholar
  131. Walker L. C, Kitt C. A., Schwam E., Buckwald B., Garcia F., Sepinwall J,, and Price D. L. (1987) Senile plaques in aged squirrel monkeys. Neurobiol. Agmg 8, 291–296.CrossRefGoogle Scholar
  132. Walker L. C., Kitt C. A., Struble R. G., Wagster M. V., Price D. L., and Cork L. C. (1988b) The neural basis of memory decline in aged monkeys. Neurobiol. Asing 9, 657–666.CrossRefGoogle Scholar
  133. Walker L. C., Koliatsos V. E., Kitt C. A., Richardson R. T., Rokaeus A., and Price D. L. (1989) Peptidergic neurons in the basal forebrain magnocellular complex of the rhesus monkey. J. Comp. Neural. 280, 272–282.CrossRefGoogle Scholar
  134. Walker L. C., Master C., Beyreuther K., and Price D. L. (1990) Amyloid in the brains of aged squirrel monkeys. Acta Neuropathol. 80, 381–387.PubMedCrossRefGoogle Scholar
  135. Wenk G. L., Pierce D. J., Struble R. G., Price D. L., and Cork L. C. (1989) Agerelated changes in multiple neurotransmitter systems in the monkey brain. Neurobiol. Aging l0, 11–19.CrossRefGoogle Scholar
  136. Weskamp G. and Otten L. J. (1987) An enzyme-linked immunoassay for nerve growth factor (NGF): a tool for studying regulatory mechanisms involved in NGF production in brain and in peripheral tissues. J Neurochem. 48, 1779–1786.PubMedCrossRefGoogle Scholar
  137. Williams L. R., Varon S., Peterson G. M., Wictorin K., Fischer W., Bjorklund A., and Gage F. H (1986) Continuous infusion of nerve growth factor prevents basal forebram neuronal death after fimbria-formx transection. Proc. Natl. Acad. Sn. USA 83, 9231–9235.CrossRefGoogle Scholar
  138. Wisniewski H. M. and Terry R. D. (1973) Reexamination of the pathogenesis of the senile plaque, in Progress in Neuropathology, vol. II (Zimmerman H. M., ed.) Grune & Stratton, New York, pp. 1–26.Google Scholar

Copyright information

© Humana Press IncThe Humana Press Inc. 1993

Authors and Affiliations

  1. 1.Neuropathology LaboratoryTheJohns Hopkins University School of MedicineBaltimore

Personalised recommendations