Retrograde Axonal Transport

Applications in Trophic Factor Research
  • Vassilis E. Koliatsos
  • Donald L. Price
Part of the Neuromethods book series (NM, volume 25)

Abstsract

The extremely elongated processes of neurons—especially axons—present an unusual challenge to the metabolic machinery of the cell. A consequence of this geometry is that the metabolic and specialized (e.g., transmission) needs of axon terminals are dependent on the perikaryon (the primary biosynthetic site of the neuron) via shipment of the necessary material along the axon. This fundamental neuronal process is called “anterograde transport” and proceeds along at least five different rate classes, the highest of which (20–400 mm/d) constitute the fast anterograde transport and the lowest of which (0.1–20 mm/d) represent slow anterograde transport (Vallee and Bloom, 1991). An estimated fraction equivalent to 10–70% of fast anterograde transport is returned to the cell body via retrograde transport (Vallee and Bloom, 1991), with velocities ranging from 120 to 240 mm/ d (Schwab and Thoenen, 1980). Retrograde transport, much like fast anterograde transport, is blocked by microtubule assembly inhibitors such as colchicine and vinblastine (Grafstein and Forman, 1980), an effect that underlies an important role for microtubules in this biological process. The role of microtubules in retrograde transport has been clarified recently, with the discovery of the microtubule-associated motor proteins kinesin (responsible for anterograde transport) and MAP 1C (responsible for retrograde transport) (Vallee and Bloom, 1991).

Keywords

Iodine Aldehyde Retina Iodide Aniline 

References

  1. Aguayo A. J., Vidal-Sanz M, Villegas-Peréz M. P. J., and Bray G. M. (1987) Growth and connectivity of axotomized retinal neurons in adult rats with optic nerves substituted by PNS grafts linking eye and the midbrain. Ann. NYAcud. Sci. 1–9.Google Scholar
  2. Alheid G. F. and Carlsen J. (1982) Small injections of fluorescent tracers by iontophoresis or chronic implantation of micropipettes. Bruin Res. 255, 176–178.Google Scholar
  3. Aloe L., Mugnaini E., and Levi-Montacini R. (1975) Light and electron microscopic studies on the excessive growth of sympathetic ganglia in rats mjected daily from birth with 6-OHDA and NGF, in Archives Italiennes De Bzologie. Pisa, Universita Degli Studi, pp. 326–353.Google Scholar
  4. Andres R., Jeng I., and Bradshaw R. A. (1977) Nerve growth factor receptors: Identification of distinct classes in plasma membranes and nuclei of embryonic dorsal root neurons. Proc. Natl. Ad. Sci. USA 74, 2785–2789.CrossRefGoogle Scholar
  5. Apfel SC, Lipton RB., Arezzo J. C., and Kesgler J. A. (1991) Nerve growth factor prevents toxic neuropathy in mice. Ann. Neural. 29, 87–90.CrossRefGoogle Scholar
  6. Applegate M. D., Koliatsos V. E., and Price D. L. (1989) Extended survival of medial septal cholinergic neurons following lesions of the fimbriafomix. Soc. Neurosci. Abstr. 15, 408.Google Scholar
  7. Arimatsu Y., Miyamoto M., Tsukui H., and Hatanaka H. (1988) Nerve growth factor enhances survival of identified projection neurons in the rat septal and diagonal band regions in vitro. Sot. Neurosci. Abstr. 14, 1114.Google Scholar
  8. Armstrong D. M., Terry R. D., DeTeresa R. M., Bruce G., Hersh L. B., and Gage F. H. (1987) Response of septal cholinergic neurons to axotomy. J. Camp. Neural. 264, 421–436.CrossRefGoogle Scholar
  9. Auburger G., Heumann R., Hellweg R., Korsching S., and Thoenen H. (1987) Developmental changes of nerve growth factor and its mRNA in the rat hippocampus: comparison with choline acetyltransferase. Den Biol. 120, 322–328.CrossRefGoogle Scholar
  10. Bandtlow C. E., Heumann R., Schwab M. E., and Thoenen H. (1987) Cellular localization of nerve growth factor synthesis by in situ hybridization. EMBO J. 6, 891–899.PubMedGoogle Scholar
  11. Barde Y-A. (1989) Trophic factors and neuronal survival. Neuron 2, 1525–1534.PubMedCrossRefGoogle Scholar
  12. Barnett J., Baecker P., Routledge-Ward C., Bursztyn-Pettegrew H., Chow J., Nguyen B., Bach C., Chan H., Tuszynskr M. H., Yoshida K., Rubalcava R., and Gage F. H. (1990) Human β nerve growth factor obtained from a baculovirus expression system has potent in vitro and in viva neurotrophic activity. Exp. Neurol. 110, 11–24.PubMedCrossRefGoogle Scholar
  13. Bentivoglio M., Juyperg H. G. J. M., Catgman-Berrevoets C. E., Loewe H., and Dann O. (1980) Two new fluorescent retrograde neuronal tracers which are transported over long distances. Neurosn. Lett. 18 25–30.CrossRefGoogle Scholar
  14. Bentivoglio M., Kuypers G. J..M, Catsman-Berrevoets C. E., and Dann O (1979) Fluorescent retrograde neuronal labeling in rat by means of substance binding specifically to adenine-thymine rich DNA. Neuroscz. Lett. 12, 235–240.CrossRefGoogle Scholar
  15. Berkemeier L. R., Wrnslow J. W., Kaplan D. R., Nikolics R., Goeddel D. V., and Rosenthal A. (1991) Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron 7, 857–866.PubMedCrossRefGoogle Scholar
  16. Bernd P. and Greene L A. (1984) Association of 125Inerve growth factor with PC12 pheochromocytoma cells. J. Bid. Chem. 259, 15,509–15,516.Google Scholar
  17. Bjerre B., Wiklund L., and Edwards D. (1975) A study of the deand regenerative changeg in the sympathetic nervous system of the adult mouse after treatment w&h antiserum to nerve growth factor. Brain Res. 92, 257–278.PubMedCrossRefGoogle Scholar
  18. Bolton A. E. and Hunter W. M. (1973) The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent.Google Scholar
  19. Blochem. J. 133, 529–539.Google Scholar
  20. Boulton T. G., Nye S. H., Robbing D. J., Ip N. Y., Radziejewska E., Morgenbesser S. D., DePinho D. A., Panayotatos N., Cobb M. H., and Yancopoulos D. (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663–675.PubMedCrossRefGoogle Scholar
  21. Brightman M. M. (1965) The distribution within the brain of ferritin inlected into cerebrospinal fluid compartments. II. Parenchymal distribution. Am. J. Anat. 117, 193–220.PubMedCrossRefGoogle Scholar
  22. Brunso-Bechtold J. K. and Hamburger V. (1979) Retrograde transport of nerve growth factor in chicken embryo. Proc. Natl. Acad. Sa. USA 76, 149–1496.CrossRefGoogle Scholar
  23. Cabot J. B., Mennone A., Bogan N., Carroll J., Evinger C., and Erichsen J. T. (1991) Retrograde, trans-synaptic and transneuronal ransport of fragment C of tetanus toxin by sympathetic preganglionic neurons. Neuroscience 40, 805–823.PubMedCrossRefGoogle Scholar
  24. Cantley L. C., Auger K. R., Carpenter C., Duckworth B., Graziani A., Kapeller R., and Soltoff S. (1991) Oncogenes and signal transduction. Cell 64, 281–302.PubMedCrossRefGoogle Scholar
  25. Cavicchioli L., Flanigan T. P., Dickson J. G., Vantini G., Toso R. D., Fusco M., Walsh F. S., and Leon A. (1991) Choline acetyltransferase messenger RNA expression in developing and adult rat brain: regulation by nerve growth factor. Mol. Bruin Res. 9, 319–325.CrossRefGoogle Scholar
  26. Cavicchioli L., Flanigan T. P., Vantini G., Fusco M, Polato P., Toffano G., Walsh F. S., and Leon A. (1989) NGF amplifies expression of NGF receptor messenger RNA in forebrain cholinergic neurons of rats. Eur. J. Neurosci. 1, 258–262.PubMedCrossRefGoogle Scholar
  27. Chang H. T., Kuo H., Whittaker J. A., and Cooper N. G. F. (1990) Light and electron microscopic analysis of projection neurons retrogradely labeled with Fluoro-Gold: notes on the application of antibodies to Fluoro-Gold. J. Neurosci. Methods 35, 31–37.PubMedCrossRefGoogle Scholar
  28. Chao M. V. (1992) Growth factor signaling: where is the specificity? cell 68, 995–997.PubMedCrossRefGoogle Scholar
  29. Clatterbuck R. E., Koliatsos V. E., and Price D. L. (1990) Peripheral nerve segments provide a matrix for axonal outgrowth of axotomized basal forebrain cholinergic and anterror thalamic neurons. Soc. Neurosci. Abstr. 16, 1283.Google Scholar
  30. Coons A. H (1956) Histochemistry with labeled antibody. Int. Rev. Cytol. 5, 1–24.CrossRefGoogle Scholar
  31. Cowan W. M., Gottlieb D. I., Hendrickson A. E., Price J, L., and Woolsey T. A. (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Bruin Res. 37, 21–51.CrossRefGoogle Scholar
  32. Crutcher R. A. (1982) Development of the rat septohippocampal projection: a retrograde fluorescent tracer study. Dev. Bruin Res. 3, 145–150.CrossRefGoogle Scholar
  33. Csillik B., Schwab M. E., and Thoenen H. (1985) Transganglionic regulation of central terminals of dorsal root ganglion cells by nerve growth factor (NGF). Bruin Res. 331, 11–15.CrossRefGoogle Scholar
  34. Dado R. J., Burstein R., Cllffer K. D., and Giesler G. J., Jr. (1990) Evidence that Fluoro-Gold can be transported avidly through fibers of passage. Bruin Res. 533, 329–333.CrossRefGoogle Scholar
  35. Davies A. M. (1989) Neurotrophic factor bioassay using dissociated neurons, in Nerve Growth Factors. IBRO Handbook series, Methods in the Neurosciences, vol. 12 (Rush R. A., ed.), Wiley, Chichester, pp. 95–109.Google Scholar
  36. Davies A. M., Bandtlow C., Heumann R., Rorsching S., Rohrer H., and Thoenen H. (1987) Timing and site of nerve growth factor synthesis in developing skin in relation to innervation and expression of the receptor. Nature 326, 353–358.PubMedCrossRefGoogle Scholar
  37. Davis S., Aldrich T. H., Valenzuela D. M., Wong V., Furth M. E., Squinto S. P., Yancopoulos G. D. (1991) The receptor for ciliary neurotrophic factor. Science 253, 59–63.PubMedCrossRefGoogle Scholar
  38. DiStefano P. S., Friedman B., Radziejewski C., Alexander C., Boland P., Schick C. M., Lmdsay R. M., and Wiegand S. J. (1992) The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8, 983–993.PubMedCrossRefGoogle Scholar
  39. Dumas M., Schwab M. E., Baumann R., and Thoenen H. (1979) Retrograde transport of tetanus toxin through a chain of two neurons. Bruin Res. 165, 354–357.CrossRefGoogle Scholar
  40. Ebendal T. E, (1989) Use of collagen gels to bioassay nerve growth factor activity, in Nerve Growth Factors. IBRO Handbook Series, Methods in the Neurosciences, vol. 12 (Rush, R. A., ed.), John Wiley & Sons, Chichester, pp. 81–93.Google Scholar
  41. Edwards S. B. (1972) The ascending and descending projections of the red nucleus in the cat, an experimental study using an autoradiographic tracing method. Bruin Res. 48, 45–63, 1972.CrossRefGoogle Scholar
  42. Ernfors P., Ibez C. F., Ebendal T., Olon L., and Persson H. (1990) Molecular cloning and neurotrophic activities of a protein with structural similarities to nerve growth factor: developmental and topographical expression in the brain. Proc. Natl. Acad. Sci. USA 87, 5454–5458.PubMedCrossRefGoogle Scholar
  43. Ernfors P., Wetmore C., Olson L., and Persson H. (1990) Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron 5, 511–526.PubMedCrossRefGoogle Scholar
  44. Penstermacher J. and Kaye T. (1988) Drug diffusion within the brain. Ann. Nγ Acad. Sci. 531, 29–39.CrossRefGoogle Scholar
  45. Ferguson I. A. and Johnson E. M., Jr. (1991) Fibroblast growth factor receptor-bearing neurons in the CNS: identification by receptor-mediated retrograde transport. J, Comp. Neurol. 313, 693–706.CrossRefGoogle Scholar
  46. Ferguson I. A., Schweitzer J. B., Bartlett P. F., and Johnson E. M., Jr. (1991) Receptor-mediated retrograde transport in CNS neurons after intraventricular administration of NGF a growth factors. J. Comp. Neurol. 313, 680–692.PubMedCrossRefGoogle Scholar
  47. Ferraro A. (1928) The connections of the pars suboculomotoria of the substantianigra. Arch. Neural. Psychiatr. 19, 177–180.Google Scholar
  48. Fischer W. and Björklund A. (1991) Loss of AChE-and NGFr-labeling precedes neuronal death of axotomized septal-diagonal band neurons: reversal by intraventricular NGF infusion. Exp. Neural. 113, 93–108.CrossRefGoogle Scholar
  49. Fishman P. S and Carrigan D. R. (1987) Retrograde transneuronal transfer of the C-fragment of tetanus toxin. Brain Res. 406, 275–279, 1987.PubMedCrossRefGoogle Scholar
  50. Frazier W. A., Boyd L. F., and Bradshaw R. A. (1974) Properties of the specific bindmg of 125I-nerve growth factor on responsive peripheral neurons. J. Biol. Chem. 249, 5513–5519.PubMedGoogle Scholar
  51. Friedman B. and Aguayo A. J. (1985) Injured neurons in the olfactory bulb of the adult rat grow axons along grafts of peripheral nerve. J, Neurosci. 5, 1616–1625.Google Scholar
  52. Gage F. H., Armstrong D. M., Williams L. R., and Varon S. (1988) Morphological response of axotomized septal neurons to nerve growth factor. J. Comp. Neural. 269, 147–155.CrossRefGoogle Scholar
  53. Gage F. H., Stenevi U., Carlstedt T., Foster G., Björklund A., and Aguayo A. J. (1980) Anatomical and functional consequences of grafting mesencephalic neurons into a peripheral nerve bridge connected to the denervated striatum. Exp. Bruin Res. 60, 584–589.Google Scholar
  54. Gage F. H., Wictorin R., Fischer W., Williams L. R., Varon S., and Bjorkhmd A. (1986) Retrograde cell changes in medial septum and diagonal band following fimbria-fornix transection: quantitative temporal analysis. Neuroscience 19, 241–255.PubMedCrossRefGoogle Scholar
  55. Gerfen C. R., Sawchenko P. E., and Carlsen J. (1989) The PHA-L anterograde axonal tracing method, in NeuroanatomicuI Tract-Tracing Methods 2. Progress Report (Heimer L. and Zaborszky L., eds.), New York, Plenum, pp. 19–47.CrossRefGoogle Scholar
  56. Gizang-Ginsberg E. and Ziff E. B. (1990) Nerve growth factor regulates tyrosine hydroxylase gene transcription through a nucleoprotein complex that contains c-Fos. Genes Deu. 4, 477–491.CrossRefGoogle Scholar
  57. Glover J. C., Petursdottu G., and Jansen J. R. S. (1986) Fluorescent dextranamines used as axonal tracers in the nervous system of the chicken embryo. J Neurosci. Methods 18, 243–254.PubMedCrossRefGoogle Scholar
  58. Grafstein B. and Forman D. S. (1980) Intracellular transport in neurons. Physiol. Rev. 60, 1167–1283.PubMedGoogle Scholar
  59. Green J., Erdmann G., and Wellhoner H. H. (1977) Is there retrograde axonal transport of tetanus toxin in both alpha and gamma fibres? Nature 265, 370.PubMedCrossRefGoogle Scholar
  60. Green S. H., Rydel R. E., Connolly J. L., and Greene L. A. (1986) PC12 cell mutants that possess lowbut not high-affinity nerve growth factor receptors neither respond to nor internalize nerve growth factor. J. Cell Biol. 102, 830–843.PubMedCrossRefGoogle Scholar
  61. Greene L. A. (1977) A quantitative bioassay for nerve growth factor activity employing a clonal pheochromocytoma cell line. Bruzn Res. 133, 350–353.CrossRefGoogle Scholar
  62. Greenwood F. C. and Hunter W. M. (1963) The preparatron of 13I-labelled human growth hormone of high specific radioactivity. Biochem. J, 89, 114–123.PubMedGoogle Scholar
  63. Hagag N., Halegoua S., and Viola M. (1986) Inhibition of growth factorinduced differentiation of PC12 cells by microinjection of antibody to rus p21. Nature 319, 680–682.PubMedCrossRefGoogle Scholar
  64. Halegoua S., Armstrong R. G, and Cremer N. E. (1991) Dissecting the mode of action of a neuronal growth factor. Cum Top. Microbial. Immunol. 165, 119–170.CrossRefGoogle Scholar
  65. Hallböök F., Ibáñez C. F., and Persson H. (1991) Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary. Neuron 6, 845–858.PubMedCrossRefGoogle Scholar
  66. Hamburger V., Brunso-Bechtold J. R., and Yip J. W. (1988) Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci. 1, 60–71.Google Scholar
  67. Hansson H. A. (1972) Retinal changes induced by treatment with vmcristine and vinblastine. Dot. Ophthulmol. 31, 65–88.Google Scholar
  68. Hayashl Y. and Milu N. (1985) Purification and characterization of a neurite outgrowth factor from chicken gizzard smooth muscle. J. Biol. Chem. 260, 14,269–14,278.Google Scholar
  69. Hefti F. (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J. Neurosci. 6, 2155–2162.PubMedGoogle Scholar
  70. Hendry I. A. (1989) In vivo admmistration of nerve growth factor, in Nerve Growth Factors. IBRO Handbook Series, Methods in the Neurosciences, vol. 12 (Rush R. A., eds.), Chichester, John Wiley & Son, pp. 193–212.Google Scholar
  71. Hendry I. A. and Iversen L. L. (1971) Effect of nerve growth factor and its antiserum on tyrosine hydroxylase activity in mouse superior cervical sympathetic ganglion. Brain Res. 29, 159–162.PubMedCrossRefGoogle Scholar
  72. Hendry I. A., Stach R., and Herrup R. (1974) Characteristics of the retrograde axonal transport system for nerve growth factor in the sympathetic nervous system. Brain Res. 82, 117–128.PubMedCrossRefGoogle Scholar
  73. Heredia M., Santacana N., and Valverde F. (1991) A method using Dil to study the connectivity of cortical transplants. J. Neurosci. Meth. 36, 17–25.CrossRefGoogle Scholar
  74. Herrup K. and Shooter E. M. (1973) Properties of the nerve growth factor receptor of an avian dorsal root ganglia. Proc. Natl. Acad. Sci. USA 70, 3884–3888.PubMedCrossRefGoogle Scholar
  75. Heumann R., Schwab M., and Thoenen H. (1981) A second messenger required for nerve growth factor biological activity? Nature 292, 838–840.PubMedCrossRefGoogle Scholar
  76. Higgins G. A., Roh S., Chen R. S., and Gage F. (1989) NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Neuron 3, 247–256.PubMedCrossRefGoogle Scholar
  77. Hofer M., Pagliusi S. R., Hohn A., Leibrock J., and Barde Y-A. (1990) Regional distribution of bram-derived neurotrophic factor mRNA in the adult mouse brain. EMBO J. 9, 2459–2464.PubMedGoogle Scholar
  78. Hohn A., Liebrock J., Bailey R., and Barde Y-A. (1990) Identification and characterization of a novel member of the nerve growth factor/brainderived neurotrophic factor family. Nature 344, 339–341.PubMedCrossRefGoogle Scholar
  79. Hokfelt T., Skagerberg G., Skirboll L. and Björklund A. (1983) Combinaton of retrograde tracing and neurotransmitter histochemistry, in Methods in Chemical Neuroanatomy, Handbook of Chemical Neuroanatomy, vol. 1 (Bjorklund A. and Höfelt T., eds.), Elsevier Science, Amsterdam, pp. 228–285.Google Scholar
  80. Honig M. G. and Hume R. I. (1989) DiI and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing. Trends Neurosci. 12, 333–341.PubMedCrossRefGoogle Scholar
  81. Honig M. G. and Hume R. I. (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J. CeU Biol. 103, 171–187.CrossRefGoogle Scholar
  82. Hosang M. and Shooter E. M. (1987) The internalization of nerve growth factor by high-affinity receptors on pheochromocytoma PC12 cells. EMBO J. 6, 1197–1202.PubMedGoogle Scholar
  83. Houle J. D. and Johnson J. E. (1989) Nerve growth factor (NGF)-treated nitrocellulose enhances and directs the regeneration of adult rat dorsal root axons through intraspinal neural tissue transplants. Neurosci. Lett. 103, 17–23.PubMedCrossRefGoogle Scholar
  84. Hughes W. L. (1957) The chemistry of iodination. Ann. N.Y. Acad. Sci. 70, 3–18.PubMedCrossRefGoogle Scholar
  85. Ibáñz C. F., Ebendal T., Barbany G., Murray-Rust J., Blundell T. L., and Persson H. (1992) Disruption of the low affinity receptor-binding site in NGF allows neuronal survival and differentiation by binding to the trk gene product. Cell 69, 329–341.CrossRefGoogle Scholar
  86. Ip N. Y., Ibez C. F., Nye S. H., McClain J., Jones P. F., Gies D. R., Belluscio L., Le Bean M. M., Espinosa R., Squinto S. P., Persson H., and Yancopoulos G. D. (1992) Mammahan neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc. Natl. Acud. Scz. USA 89, 3060–3064.CrossRefGoogle Scholar
  87. Iversen L. L., Stockel R., and Thoenen H. (1975) Autoradiographic studies of the retrograde axonal transport of nerve growth factor in mouse sympathetic neurones. Bruin Aes. 88, 37–43.CrossRefGoogle Scholar
  88. Imamura T., Engleka R., Zhan X., Tokita Y., Forough R., Roeder D., Jackson A., Maier J. A. M., Hla T., and Macias T. (1990) Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science 249, 1567–1570.PubMedCrossRefGoogle Scholar
  89. Johnson E. M. Jr., Andres R. Y., and Bradshaw R. A. (1978) Characterization of the retrograde transport of nerve growth factor (NGF) using high specific activity [125]NGF. Brain Res. 150, 319–331.PubMedCrossRefGoogle Scholar
  90. Johnson R. T. and Griffin D. E. (1978) Pathogenesis of viral infections, in Handbook of Clinicul Neurology. Infections of the Nervous System (Vinken P. J. and Bruyn G. W., eds.), North Holland, Amsterdam, pp. 15–37.Google Scholar
  91. Johnson E. M., Jr., Taniuchi M., Clark H. B., Springer J. E., Roh S., Taynen M. W., and Loy R. (1987) Demonstration of the retrograde transport of nerve growth factor receptor in the peripheral and central nervous system. J. Neurosci. 7, 923–929.PubMedGoogle Scholar
  92. Kaplan D. R., Hempstead B. L., Martm-Zanca D., Chao V., and Parada L. F. (1991) The trk proto-oncogene product a signal transducing receptor for nerve growth factor. Science 252, 554–558.PubMedCrossRefGoogle Scholar
  93. Kaplan D. R., Martin-Zanca D, and Parada L. F. (1991) Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncoge product mduced by NGF. Nature 350, 158–160.PubMedCrossRefGoogle Scholar
  94. Katz L. C., Burkhalter A., and Dreyer W. J. (1984) Fluorescent latex microspheres as a retrograde neuronal marker for in viva and in vitro studies of visual cortex. Nature 310, 498–500.PubMedCrossRefGoogle Scholar
  95. Kessler J.A. and Black I. B. (1980) Nerve growth factor stimulates the development of substance P in sensory ganglia. Proc. Natl. Acud. Sci. USA 77’ 649–652.CrossRefGoogle Scholar
  96. Kessler J. A., Adler J. E., and Black I. B. (1982) Regulation of substance P and somatostatin in sympathetic and sensory neurons. Neurology 32, 107.CrossRefGoogle Scholar
  97. Klem R., Jing S., Nanduri V., O’Rourke E., and Barbacid M. (1991) The trk protooncogene encodes a receptor for nerve growth factor. Cell 65, 189–197.CrossRefGoogle Scholar
  98. Koliatsos V. E. and Price D. L. (1991) The basal forebrain cholinergic system: an evolving concept in the neurobiology of the forebrain, in Activation to Acquisition. Functional Aspects of the Basal Forebrain Cholinergic System (Richardson R. T., ed.), Birkhauser, Boston, pp. 11–71.CrossRefGoogle Scholar
  99. Koliatsos V. E., Applegate M. D., Kitt C. A., Walker L. C., DeLong M. R., and Price D. L. (1989) Aberrant phosphorylation of neurofilaments accompanies transmitter-related changes in rat septal neurons following transection of the fihria-forinx. Bruin Res. 482, 205–218.CrossRefGoogle Scholar
  100. Koliatsos V. E., Applegate M. D., Knusel B., Junard E O., Burton L. E., Mobley W. C., Hefti F. F., and Price D. L. (1991) Recombinant human nerve growth factor prevents retrograde degeneration of axotomized basal forebrain cholinergic neurons in the rat. Exp. NeuroI. 112, 161–173.CrossRefGoogle Scholar
  101. Kollatsos V. E., Clatterbuck R. E., Nauta H. J. W., Knusel B., Burton L. E., Hefti F. F., Mobley W. C., and Price D. L. (1991) Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann. Neural. 30, 831–840.CrossRefGoogle Scholar
  102. Koliatsos V. E., Crawford T. O., and Price D. L. (1991) Axotomy induces nerve growth factor receptor immunoreactivity in spinal motor neurons. Brain Res. 549, 297–304.PubMedCrossRefGoogle Scholar
  103. Koliatsos V. E., Martin L. J., and Price D. L. (1990) Efferent organization of the mammalian basal forebrain, in Brain ChoZinergic Systems (Steriade M. and Biesold D., eds.), Oxford University Press, Oxford, pp. 120–152.Google Scholar
  104. Koliatsos V. E., Nauta H. J. W., Clatterbuck R. E., Holtzman D. M., Mobley W. C., and Price D. L. (1990) Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholmergic neurons in the monkey. J. Neurosci. 10, 3801–3813.PubMedGoogle Scholar
  105. Koliatsos V. E., Clatterbuck R. E., Winslow J-W., Cayouette M. H., and Price D. L. (1993) Evidence that brain-derived neurotrophic factor is a trophic factor for motor neurons in vivo. Neuron, 10, 1–9.CrossRefGoogle Scholar
  106. Kristensson X., Olsson Y., and Sjostrand J. (1971) Axonal uptake and retrograde transport of exogenous proteins in the hypoglossal nerve. Brain Res. 32, 399–406.PubMedCrossRefGoogle Scholar
  107. Kromer L. F. (1987) Nerve growth factor treatment after brain prevents neuronal death. Science 235, 214–216.PubMedCrossRefGoogle Scholar
  108. Kuypers H. G. J. M. and Huisman A. M. (1984) Fluorescent neuronal tracers. Adv. Cell Neurobiol. 5, 307–340.Google Scholar
  109. Kuypers H. G. J. M. and Ugolini G. (1990) Viruses as transneuronal tracers. Trends Neurosci. 13, 71–75.PubMedCrossRefGoogle Scholar
  110. Kuypers H. G. J. M., Bentivoglio M., Van der Kooy D., and Ca&nann-Berrevoets C. E. (1979) Retrograde transport of bisenzimide and propidium iodide through axons to their parent cell bodies. Neurosci. Lett. 12, 1–7.PubMedCrossRefGoogle Scholar
  111. Kuypers H. G. J. M., Catsmann-Berrevoets C. E., and Padt R. E. (1977) Retrograde axonal transport of fluorescent substances in the rat’s forebrain. Neurosci. Lett. 6, 127–135.PubMedCrossRefGoogle Scholar
  112. Lamballe F., Klein R., and Barbacid N. (1991) trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66, 967–979.PubMedCrossRefGoogle Scholar
  113. Landis S. C. (1990) Target regulation of neurotransmitter phenotype. Trends Neurosci. 13’ 344–350.PubMedCrossRefGoogle Scholar
  114. LaVail J. H. and La Vail M. M. (1972) Retrograde axonal transport in the central nervous system. Science 176, 1416–1417.PubMedCrossRefGoogle Scholar
  115. Lazarovicr P., Dickens G., Kuzuya H., and Guroff G. (1987) Long-term, heterologous down-regulation of the epidermal growth factor receptor in PC12 cells by nerve growth factor. J. Cell Biol. 104, 1611–1621.CrossRefGoogle Scholar
  116. Leibrock J., Lottspelch F., Hohn A., Hofer N., Hengerer B., Masiakowski P., Thoenen H., and Barde Y-A. (1989) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341, 149–152.PubMedCrossRefGoogle Scholar
  117. Leonard D. G. B., Ziff E. B., and Greene L. A. (1987) Identification and characterization of mRNAs regulated by nerve growth factor in PC12 cells. Mol. Cell Biol. 7 3156–3167.PubMedGoogle Scholar
  118. Levi-Montalcini R. and Angeletti P. U. (1968) Nerve growth factor. Physiol. Rev. 48, 534–569.PubMedGoogle Scholar
  119. Lindsay R. M. (1988) nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J. Neurosci. 8, 2394–2405.PubMedGoogle Scholar
  120. Lumsden A. G. S. and Davies A. M. (1983) Earliest sensory nerve fibres are guided to peripheral targets by attractants other than nerve growth factor. Nature 306, 786–788.PubMedCrossRefGoogle Scholar
  121. Lynch G., Gall C., Mensah P., and Cotman C W. (1974) Horseradish peroxidase histochemistry, a new mehod for tracing efferent projections in the central nervous system. Bruin Res, 65, 373–380.CrossRefGoogle Scholar
  122. Maisonpierre P. G, Belluscio L., Suinto S., Ip N. Y., Furth M, E., Lindsay R. M., and Yancopoulos G. D. (1990) Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science 247, 1446–1451.PubMedCrossRefGoogle Scholar
  123. Manning P. T., Russell J. H., Simmons B., and Johnson E. M., Jr. (1985) Protection from guanethidine-induced neuronal destruction by nerve growth factor: effect of NGF on immune function. Brain Res. 340, 61–69.PubMedCrossRefGoogle Scholar
  124. Marchalonis J. J. (1969) An enzymatic method for the trace iodination of immunoglobulins and other proteins. Biochem. J. 113, 299–305.PubMedGoogle Scholar
  125. Menetrey D. (1985) Retrograde tracing of neural pathways with a proteingold complex. I. Light microscopic detection after silver intensification. Histochemistry 83, 391–395.PubMedCrossRefGoogle Scholar
  126. Mesulam M-M. (1982) Tracing Neural Connections with Horseradish Peroxiduse. John Wiley & Sons, Chichester.Google Scholar
  127. Mobley W. C., Rutkowski J. L., Tennekoon G. I., Gemski J., Buchanan R., and Johnston M. V. (1986) Nerve growth factor increases choline acetyltransferase activity in developing basal forebrain neurons. Mol. Brain Res. 1, 53–62.CrossRefGoogle Scholar
  128. Mufson E. L., Brady D. R., and Kordower J. H. (1990) Tracing neuronal connections in postmortem human hippocampal complex with the carbocyanine dye DiI. Neurobiol. Aging 11, 649–653.PubMedCrossRefGoogle Scholar
  129. Nauta W. J. H. and Gygax P, A. (1951) Silver impregnation of degenerating axon terminals in the central nervous system: (1) technic. (2) chemical notes. Stain Technol. 26, 5–11.PubMedGoogle Scholar
  130. Nauta W. J. H. and Gygax P. A. (1954) Silver impregnation of degenerating axons in the central nervous system: a modified technique. Stain Technol. 29, 91–93.PubMedGoogle Scholar
  131. Nissl F. (1984) Der gegenwartige Stand der Nervenzellenanatomie und irhe nächsten Zlele. Neural. Centralbl. 14, 66–75.Google Scholar
  132. O’Brien T. S., Svendsen C. N., Isacson O., and Sofroniew M. V. (1990) Loss of True blue labelling from the medial septum following transection of the funbria-fornix: evidence for the death of cholinergic and noncholinergic neurons. Brazn Res. 508, 249–256.CrossRefGoogle Scholar
  133. Oppenheim R. W. (1989) The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci. 12, 252–255.PubMedCrossRefGoogle Scholar
  134. Paschal B. M., Shpetner S., and Vallee R. B. (1987) MAP 1C is a microtubuleactivated ATPase which translocates microtubules in vitro and has dynein-like properties. J. Cell Bid. 105, 1273–1282.CrossRefGoogle Scholar
  135. Pearson R. C. A., Sofroniew M. V., and Powell T. P. S. (1984) Hypertrophy of mununohistochemically identified cholinergic neurons of the basal nucleus of Meynert following ablation of the contralateral cortex in the rat. Bruin Res. 311, 194–198.CrossRefGoogle Scholar
  136. Plckel V. M. and Milner T. A. (1980) Interchangeable uses of autoradiographic and peroxidase markers for electron microscopic detection of neuronal pathways and transmitter-related antigens in single sections, in Neuroanatomical Tract-Tracing Methods 2. Progress Report (Heuner L. and Zaborszky L., eds.), Plenum, New York, pp. 97–127.Google Scholar
  137. Price D. L. and Griffin J. (1976) Neural transport of tetanus toxin. Science 192, 159.Google Scholar
  138. Price D. L., Griffin J., Young A., Peck K., and Stocks A. (1975) Tetanus toxin: direct evidence for retrograde intraaxonal transport. Science 188, 945–947.PubMedCrossRefGoogle Scholar
  139. Purves D. (1988) Body and Brain. A Trophic Theory of Neural Connections. Harvard University, Cambridge.Google Scholar
  140. Rho J-H. and Sidman R. L. (1986) Intracellular injection of Lucifer yellow into lightly fixed cerebellar neurons. Neurosci. Lett. 72, 21–24.PubMedCrossRefGoogle Scholar
  141. Rho J-H. and Swanson L. W. (1987) Neuroendocrine CRF motoneurons: intrahypothalamic axon terminals shown with a new retrograde Lucifer-immuno method. Brazn Res. 436, 143–147.CrossRefGoogle Scholar
  142. Richardson P. M. and Riopelle R. J. (1986) Influences of peripheral nerve components on axonal growth. Ann. NY Acad. Sci. 486, 182–193.PubMedCrossRefGoogle Scholar
  143. Rodriguez-Tébar A. and Barde Y-A. (1988) Binding characteristics of brainderived neurotrophic factor to its receptors on neurons from the chick emryo. J. Neurosci. 8, 3337–3342.PubMedGoogle Scholar
  144. Rosenthal A., Goeddel D. V., Nguyen T., Lewis M., Shah A., Laramee G. R., Nikolics K., and Winslow J. W. (1990) Primary structure and biological activity of a novel human-neurotrophic factor. Neuron 4, 767–773.PubMedCrossRefGoogle Scholar
  145. Rosenthal A., Goeddel D. V., Nguyen T., Martin E, Burton L. E., Shih A., Laramee G. R., Wurm F., Mason A., Nikolics K., and Winslow J. W. (1991) Primary structure and biological activity of human brainderived neurotrophic factor. Endocrinology 129, 1289–1294.PubMedCrossRefGoogle Scholar
  146. Rye D. B., Saper C. B., and Wainer B. H. (1984) Stabilization of the tetramethylbenzidine (TMB) reaction product: application for retrograde and anterograde tracing, and combination with immununohistochemistry. J. Histochem. Cytochem. 32, 1145–1153.PubMedCrossRefGoogle Scholar
  147. Sawchenko P. E. and Swanson L. W. (1981) A method for tracing biochemically defined pathways in the central nervous system using combined fluorescence retrograde transport and imunohistochemical techniques. Brain Res. 210, 31–51.PubMedCrossRefGoogle Scholar
  148. Schaffner A. E., St. John P. A., and Barker J. L. (1987) Fluorescence-activated cell sorting of embryonic mouse and rat motoneurons and their longterm survival in vitro. Neurosci. 7, 3088–3104.Google Scholar
  149. Schiavo G., Ferrari G., Rossetto O., and Montecucco C. (1991) Tetanus toxin receptor. Specific cross-linking of tetanus toxin to a protein of NGF-differentiated PC12 cells. FEBS Lett. 290, 227–230.PubMedCrossRefGoogle Scholar
  150. Schmued L. C. and Fallon J, H. (1986) Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res. 377, 147–154.PubMedCrossRefGoogle Scholar
  151. Schwab M. and Thoenen H. (1977) Selective trans-synaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: a comparison with nerve growth factor. Brain Res. 122, 459–474.PubMedCrossRefGoogle Scholar
  152. Schwab M. E. (1977) Ultrastructural localization of a nerve growth factorhorseradish peroxidase (NGF-HRP) coupling product after retrograde axonal transport in adrenergic neurons. Brain Res. 130, 190–196.PubMedCrossRefGoogle Scholar
  153. Schwab M. E. and Thoenen H. (1983) Retrograde axonal transport, in Hand-book of Neurochemistry, vol. 5 (Lajtha A., ed.), Plenum, New York, pp. 381–404.Google Scholar
  154. Schwab M. E., Otten U., Agid Y., and Thoenen H. (1979) Nerve growth factor (NGF) in the rat CNS: absence of specific retrograde axonal transport and tyrosine hydroxylase induction in locus coeruleus and substantia nigra. Brain Res. 168, 473–483.PubMedCrossRefGoogle Scholar
  155. Seiler M. and Schwab M. E. (1984) Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res. 300, 33–39.PubMedCrossRefGoogle Scholar
  156. Shelton D. L. and Reichardt L. F. (1986) Studies on the expression of the bg nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as a trophic factor for several distinct populations of neurons. Proc. Natl. Acad. Ser. USA 83, 2714–2718.CrossRefGoogle Scholar
  157. Skirboll L., Hökfelt T., Norell G., Phillipson O., Kuypers H. G. J. M., Bentrvoglio M., Catsman-Berrevoets C. E., Visser T. J., Steinbusch H., Verhofstad A., Cuello A. C., Goldstein M., and Brownstein M. (1984) A method for specific transmitter identification of retrogradely labeled neurons: immunofluorescence combmed with fluorescence tracing. Brain Res. Rev. 8, 99–127.CrossRefGoogle Scholar
  158. Skirboll L. R., Thor K, Helke C, Hökfelt T., Robertson B., and Long R. (1989) Use of retrograde fluorescent tracers in combination with immunohrstochemical methods, in Neurounatomicul Tract-Tracing Methods 2 Progress Report (Heuser L. and Zaborszky L., eds.), Plenum, New York, pp. 5–18.CrossRefGoogle Scholar
  159. Smet P. J., Abrahamson I. R., Ressom R. E., and Rush R. A. (1991) A ciliary neuronotrophic factor from peripheral nerve and smooth muscle which is not retrogradely transported. Neurochem. Res. 16, 613–620.PubMedCrossRefGoogle Scholar
  160. Snider W. D. (1988) Nerve growth factor enhance dendritic arbrization of sympathetic ganglion cells in developing mammals. J. Neurosci. 8, 2628–2634.PubMedGoogle Scholar
  161. Sofromew M. V., Pearson R. C. A., and Powell T. P. S. (1987) The cholinergic nuclei of the basal forebrain of the rat: normal structure, development and experimentally induced degeneration, Brain Res. 411, 310–331CrossRefGoogle Scholar
  162. Soppet D., Escandon E., Maragos J., Middlemas D. S., Reid S. W., Blair J., Burton L. E., Stanton B. R., Kaplan D. R., Hunter T., Nikolics K. J., and Parada L. F. (1991) The neurotrophic factors brain-derived neurotrophine factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell 65, 895–903.PubMedCrossRefGoogle Scholar
  163. Squinto S. P., Stitt T. N., Aldrich T. H., Davis S., Bianco S. M., Radziejewski C., Glass D. J,, Masiakowski P., Furth M. E., Valenzuela D. M., DiStefano P. S., and Yancopoulos G. D. (1991) trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 65, 885–893.PubMedCrossRefGoogle Scholar
  164. Steward O. (1981) Horseradish peroxidase and fluorescent substances and their combination with other techniques, in Neuroanatomical Tract-Tracing Methods (Heimer L. and Robards M. J., eds.), Plenum, New York, pp. 279–310.CrossRefGoogle Scholar
  165. Stockel K., Schwab M., and Thoenen H. (1975) Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res. 99, 1–16.PubMedCrossRefGoogle Scholar
  166. Swanson L. W. (1983) The use of retrogradely transported fluorescent markers in neuroanatomy, in Amtomicul Techniqes. Current Methods in Cellular Neurobiology, vol. 1 (Barker J. L. and McKelvy F., eds.) John Wiley & Sons, New York, pp. 219–240.Google Scholar
  167. Thanos S., Bahr M., Barde Y-A., and Vanselow J. (1989) Survival and axonal elongation of adult rat retinal ganglion cells. In vitro effects of lesioned sciatic nerve and brain derived neurotrophic factor. Eur. J. Neuroscz. 1, 19–26.CrossRefGoogle Scholar
  168. Thanos S., Vidal-Sanz M., and Aguayo A. J. (1987) The use of rhodamine-Bisothiocyanate (RITC) as an anterograde and retrograde tracer in the adult rat visual system. Brain Res. 406, 317–321.PubMedCrossRefGoogle Scholar
  169. Thoenen H. (1991) The changing scene of neurotrophic factors. Trends Neuroscz. 14, 165–170.CrossRefGoogle Scholar
  170. Thoenen H. and Barde Y. A. (1980) Physiology of nerve growth factor. Physiol. Rev. 60, 1284–1335.PubMedGoogle Scholar
  171. Thoenen H., Angeletti P., Levi-Montalcini R., and Kettler R. (1971) Selective induction of tyrosine hydroxylase and dopamme-β-hydroxylase in rat superior cervical ganglia by nerve growth factor. proc. Natl. Acad. Sci. USA 68, 1598–1602.PubMedCrossRefGoogle Scholar
  172. Thoenen H., Auburger G., Hellweg R., Heumann R., and Korschmg S. (1987) Cholinergic innervation and levels of nerve growth factor and its mRNA in the central nervous system, in Cellular and Molecular Basis of Cholinergic Function (Dowdall M. J. and Hawthorne J. N., eds.), Ellis Horwood, Chichester, pp. 379–388.Google Scholar
  173. Thoenen H., Bandtlow C., and Heumann R. (1987) The physiological function of nerve growth factor in the central nervous system: comparison with the periphery. Rev. Physiol. Biochem. Pharmacol. 109, 145–178.PubMedCrossRefGoogle Scholar
  174. Thomas S. M., DeMarco M., D’Arcangelo G., Halegoua S., and Brugge S. (1992) Ras is essential for nerve growth factorand phorbol esterinduced tyrosine phosphorylation of MAP kinases. Cell 68, 1031–1040.PubMedCrossRefGoogle Scholar
  175. Thompson M. A. and Ziff E. B. (1989) Structure of the gene encoding peripherin, an NGF-regulated neuronal-specific type III intermediate filament protein. Neuron 2, 1043–1053.PubMedCrossRefGoogle Scholar
  176. Tsukita S. and Ishikawa H. (1980) The movement of membranous organelles in axons. Electron microscopic identification of anterogradely and retrogradely transported organelles. J. Cell Biol. 84, 513–530.PubMedCrossRefGoogle Scholar
  177. Tuszynski M. H., Sang H., Yoshida K., and Gage F. H. (1991) Recombinant human nerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann. Neural. 30, 625–636.CrossRefGoogle Scholar
  178. Tuszynski M., U H. S., Amaral D. G., and Gage F. H. (1990) Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J. Neurosa. 10, 3604–3614.Google Scholar
  179. Ugolini G., Kuypers H. G. J. M., and Simmon A. (1987) Retrograde transneuronal transfer of Herpes simplex virus type 1 (HSV 1) from motoneurones. Brain Res. 422, 242–256.PubMedCrossRefGoogle Scholar
  180. Vallee R. B. and Bloom G. S. (1991) Mechanisms of fast and slow axonal transport. Annu. Rev. Neurosci. 14, 59–92.PubMedCrossRefGoogle Scholar
  181. Verge V. M. K., Tetzlaff W., Bisby M. A., and Richardson P. M. (1990) Influence of nerve growth factor on neurofilament gene expression in mature primary sensory neurons. J. Neurosci. 10, 2018–2025.PubMedGoogle Scholar
  182. Vetter M. L., Martin-Zanca D., Parada L. F., Bishop J. M., and Kaplan D. R. (1991) Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C-γ, by a kinase activity associated with the product of the trk protooncogene. Proc. Natl. Acad. Sci USA 88, 5650–5654.PubMedCrossRefGoogle Scholar
  183. Vidal-Sanz M., Bray G. M., Villegas-Perez M. P, Thanos S., and Aguayo A. J. (1987) Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat. J. Neurosci. 7, 2894–2909.PubMedGoogle Scholar
  184. Villegas-Peréz M. P., Vidal-Sanz M., Bray G. M., and Aguayo A. J. (1988) Influences of peripheral nerve grafts on the survival and regrowth of axotomized retinal ganglion cells in adult rats. J. Neurosci. 8, 265–280.PubMedGoogle Scholar
  185. Vinken P. J. and Bruyn G. W. (1991) Leucodystrophies and Poliodystrophies, Handbook of Clinical Neurolgy, vol. 10. North-Holland, Amsterdam.Google Scholar
  186. Warr W. B., de Olmos J. S., and Hemmer L. (1981) Horseradish peroxidase. the basic procedure, in Neurounatomical Tract-Tmcrng Methods (Heimer L. and Robards M. J., eds.), Plenum, New York, pp. 207–262.CrossRefGoogle Scholar
  187. Wayne D. B. and Heaton M. B. (1988) Retrograde transport of NGF by early chick embryo spmal cord motoneurons. Dev. Biol. 127, 220–223.PubMedCrossRefGoogle Scholar
  188. Williams L. R., Varon S., Peterson G. M., Wictorm R., Fischer W., Bjorklund A., and Gage F. H. (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria forinx transection. Proc. Natl. Acad. Sci USA 83, 9231–9235.PubMedCrossRefGoogle Scholar
  189. Wood K. W., Sarnecki C., Roberts T. M., and Blenis J. (1992) ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases, MAP kinase, Raf-1, and RSK. Cell 68, 1041–1050.PubMedCrossRefGoogle Scholar
  190. Woodward W. R., Nishi R., Neshul C. R., Williams T. E., Coulombe M., and Eckenstein F. P (1992) Nuclear and cytoplasmic localization of basic frbroblast growth factor in astrocyte and CA2 hrppocampal neurons. J. Neurosci. 12, 142–152.PubMedGoogle Scholar
  191. Yan Q., Elliott J., and Snider W. D. (1992) Brain-derived neurotrophic factor rescues spinal motor neurons from axotonomy-induced cell death. Nature 360, 753–755.PubMedCrossRefGoogle Scholar
  192. Yan Q., Snider W. D., Pinzone J. J., and Johnson E. M., Jr. (1988) Retrograde transport of nerve growth factor (NGF) in motoneurons of developing rats, assessment of potential neurotrophic effects. Neuron 1, 335–343.PubMedCrossRefGoogle Scholar
  193. Yankner B. A. and Shooter E. M. (1979) Nerve growth factor in the nucleus: mteraction with receptors on the nuclear membrane. Proc. Natl. Acad. Sci. USA 76, 1269–1273.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press IncThe Humana Press Inc. 1993

Authors and Affiliations

  • Vassilis E. Koliatsos
    • 1
  • Donald L. Price
    • 1
  1. 1.Neuropathology LaboratoryTheJohns Hopkins University School of Medicine

Personalised recommendations