Skip to main content

Subcloning for DNA Sequencing

  • Protocol
  • 1165 Accesses

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 23))

Abstract

Chemical (1) and enzymatic (2) methods for determining DNA sequences have revolutionized the techniques of molecular genetics and subsequently our understanding of the gene. The use of singlestranded Ml3 bacteriophage (3–5), in conjunction with Sanger’s dideoxy chain-termination sequencing procedure (2), has greatly increased the rate at which genes can be analyzed. One prerequisite for an efficient sequencing strategy is a set of subclones whose endpoints are evenly distributed along the entire sequence. Shotgun subcloning methods ((6),(7)) require rigorous fractionation of the DNA fragments before cloning, to insure appropriately sized subclones in the final library. Since clones are then chosen at random from the library, shotgun methods are very inefficient at completing the last few small sequence gaps that remain near the end of the project. Various nonrandom subcloning methods have also been developed, utilizing partial restriction digests (8), BAL-3 1 digestion (9), exonuclease III digestion (l0–13), and DNase I (14).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Maxam, A. M and Gilbert, W. (1977) A new method for sequencing DNA Proc Natl. Acad Sci. USA 74, 560–564.

    Article  PubMed  CAS  Google Scholar 

  2. Sanger, F., Nicklen, S., and Coulson, A. R(1977) DNA sequencing with chainterminating inhibitors.Proc. Natl. Acad. Set. USA 74, 5463–5467.

    Article  CAS  Google Scholar 

  3. Messing, J., Crea, R., and Seeburg, P. H. (1981) A system for shotgun DNA sequencing. Nucl. Acids Res. 9, 309–321.

    Article  PubMed  CAS  Google Scholar 

  4. Vieira, J. and Messing, J. (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal prtmers. Gene 19, 259–268

    Article  PubMed  CAS  Google Scholar 

  5. Messmg, J. and Vieira, J (1982) A new pair of Ml3 vectors for selecting either DNA strand of double-digest restriction fragments Gene 19, 269–276.

    Article  Google Scholar 

  6. Anderson, S (1981) Shotgun DNA sequencing using cloned DNase I-generated fragments. Nucl Aads Res 9, 3015–3027.

    Article  CAS  Google Scholar 

  7. Deininger, P. L (1983) Approaches to rapid DNA sequence analysis. Anal.Biochem 129, 216–223

    Article  PubMed  CAS  Google Scholar 

  8. Lamperti, E. D. and Villa-Komaroff, L. (1990) Generation of deletion subclones for sequencing by partial digestion with restriction endonucleases. Anal. Biochem. 185, 187–193.

    Article  PubMed  CAS  Google Scholar 

  9. Poncz, M., Solowiejczyk, D., Ballantine, M., Schwartz, E, and Surrey, S. (1982)“Nonrandom” DNA sequence analysis in bacteriophage Ml3 by the dideoxy chain-termination method. Proc. Natl. Acad See. USA 79, 4298–4302

    Article  CAS  Google Scholar 

  10. Guo, L. H. and Wu, R. (1982) New rapid methods for DNA sequencing based on exonuclease III digestion followed by repair synthesis Nucl. Acids Res 10, 2065–2084.

    Article  PubMed  CAS  Google Scholar 

  11. Henikoff, S. (1984) Umdirectional dtgestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28, 351–359.

    Article  PubMed  CAS  Google Scholar 

  12. Henikoff, S (1990) Ordered deletions for DNA sequencing and m vitro mutagenesis by polymerase extension and exonuclease III gapping of circular templates Nucl. Acids Res. 18, 2961–2966

    Article  PubMed  CAS  Google Scholar 

  13. Gronostajski, R. M and Sadowski, P. D (1985) Determmatton of DNA sequences essential for FLP mediated recombination by a novel method J Biol. Chem. 260, 12,32O–12,327.

    Google Scholar 

  14. Hong, G. F (1982) A systematic DNA sequencing strategy.J Mol. Biol. 158, 539–549

    Article  PubMed  CAS  Google Scholar 

  15. Lm, H.-C., Lei, S.-P., and Wilcox, G. (1985) An improved DNA sequencmg strategy Anal. Biochem. 147, 114–119.

    Article  Google Scholar 

  16. Ish-Horowitz, D., and Burke, J. F. (1981) Rapid and efficient cosmtd clonmg Nuci Acids Res. 9, 2989–2998.

    Article  Google Scholar 

  17. Rigby, P W J., Dieckmann, M, Rhodes, C, and Berg, P. (1977) Labelmg deoxyribonucletc acid to high specific activity by nick translation with DNA polymerase I. J Mol. Biof. 113, 237–251

    Article  CAS  Google Scholar 

  18. Lis, J T. (1980) Fractionatton of DNA fragments by polyethylene glycol induced precrpitation. Meth. Enzymol 65, 347–353

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Humana Press Inc. Totowa, New Jersey

About this protocol

Cite this protocol

Studnicka, G.M., Lei, SP., Lin, HC., Wilcox, G. (1993). Subcloning for DNA Sequencing. In: Griffin, H.G., Griffin, A.M. (eds) DNA Sequencing Protocols. Methods in Molecular Biology™, vol 23. Humana Press. https://doi.org/10.1385/0-89603-248-5:69

Download citation

  • DOI: https://doi.org/10.1385/0-89603-248-5:69

  • Publisher Name: Humana Press

  • Print ISBN: 978-0-89603-248-4

  • Online ISBN: 978-1-59259-510-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics