Transgenic Rodents and the Study of the Central Nervous System

  • David A. Carter
Part of the Methods in Molecular Biology™ book series (MIMB, volume 18)


The following view of transgenic studies applied to the understanding of brain function is written as a guide for neuroscientists who may be considering transgenesis techniques in the pursuit of their research. Although most important studies are covered, the chapter is not a comprehensive review of the literature. Rather, it is intended to convey the possibilities of a particular technique, and thus provide an indication of both strategies and attainable goals. In addition to providing information relevant to experimental design, particular areas of neuroscience that have benefited from transgenic approaches will also be discussed. Developmental neurobiology is not specifically addressed; for a recent review of genomic manipulations in neuron/ glial lineage analysis, see ref. 1. The first section of the present chapter describes the use of transgenics to localize cis-acting elements within neuronal genes, which act in the mediation of cell-specific and regulated expression. Transgenic mice have been chosen, to an extent, by default as models for neuronal gene analysis since suitable, permanent neuronal cell lines are not available for transfection studies. Analysis of enhancer/promoter regions is a daunting undertaking in transgenics and there is a strong argument for combining these studies with DNA-mediated transfection experiments in heterologous cell lines. Transgenic animals are, however, much more than model expression systems; they provide a unique opportunity to study both the regulation and role of neuronal genes in the context of integrated brain systems. The second section deals with approaches to neuronal gene function, concerning both gain-of-function and loss-of-function techniques. In the third section, the use of transgenics in the molecular analysis of neurological syndromes is discussed: Are transgenic rodents useful models for human brain diseases? Finally, the capacity to generate neuronal cell lines following targeted expression of oncogenes to specific neurons is assessed. The transgenic studies discussed here employ mice as the experimental animal, and, with one exception, use DNA microinjection techniques (see  Chapters 18 and  19) in the generation of transgenics. At the time of writing, no studies have been published in which neuronal transgenes are expressed in rats. However, the techniques for producing transgenic rats are now available (see  Chapters 26 31); given the ubiquitous use of rats by neuroscience investigators it is anticipated that the rat will be increasingly used to provide transgenic models for brain research.


Myelin Basic Protein GnRH Neuron Neuronal Gene Growth Hormone Gene Growth Hormone Release Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rossant, J. (1990) Manipulating the mouse genome: Implications for neurobiology. Neuron 4, 323–334.PubMedCrossRefGoogle Scholar
  2. 2.
    Wuenschell, C.W., Mori, N., and Anderson, D. J. (1990) Analysis of SCG10 gene expression in transgenic mice reveals that neural specificity is achieved through selective derepression. Neuron 4, 595–602.PubMedCrossRefGoogle Scholar
  3. 3.
    Baetge, E E, Behringer, R. R, Messing, A., Brinster, R. L., and Pahmiter, R. D. (1988) Transgenic mice express the human phenylethanolamine N-methyltransferase gene in adrenal medulla and retina. Proc. Natl. Acad. Sct USA 85, 3648–3652.CrossRefGoogle Scholar
  4. 4.
    Tremblay, Y., Tretjakoff, I., Peterson, A., Antakly, T., Zhang, C. H., and Dtrouin, J. (1988) Pituitary-specific expression and glucocorticoid regulation of a proopiomelanocortin fusion gene in transgenic mice. proc. Natl. Acad. Sct. USA 85, 8890–8894.CrossRefGoogle Scholar
  5. 5.
    Forss-Petter, S., Danielson, P E, Carsicas, S., Battenberg, E., Price, J., Nerenberg, M., and Sutcliffe, J. G. (1990) Transgenic mice expressing δ-Galactosidase in mature neurons under neuron-specific enolase promoter control Neuron 5, 187–197.PubMedCrossRefGoogle Scholar
  6. 6.
    Mercer, E. H., Hoyle, G. W., Kapur, R. P., Brinster, R. L., and Palmiter, R. D. (1991) The dopamine β-hydroxylase gene promoter directs expression of E.Coli. lacZ to sympathetic and other neurons in adult transgenic mice. Neuron 7, 703–716.PubMedCrossRefGoogle Scholar
  7. 7.
    Patil, N., Lacy, E., and Chao, M. V. (1990) Specific neuronal expression of human NGF receptors in the basal forebrain and cerebellum of transgenic mice Neuron 2, 437–447.CrossRefGoogle Scholar
  8. 8.
    Oberdick, J., Smeyne, R. J, Mann, J. R., Zackson, S., and Morgan, J. I. (1990) A promoter that drives transgene expression in cerebellar purkinje and retinal bipolar neurons. Science 248, 223–226.PubMedCrossRefGoogle Scholar
  9. 9.
    Mason, A. J., Pitts, S. L., Nikolics, K., Szonyi, E., Wilcox, J. N., Seeburg, P. H., and Stewart, T. A. (1986) The hypogonadal mouse Reproductive functions restored by gene therapy. Science 234, 1372–1378.PubMedCrossRefGoogle Scholar
  10. 10.
    Enver, T., Raich, N., Ebens, A. J., Papayannopoulou, T., Constantini, F., and Stamatoyannopoulos, G. (1990) Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature 344, 309–313.PubMedCrossRefGoogle Scholar
  11. 11.
    Young III, W. S., Reynolds, K., Shepard, E. A., Gamer, H., and Castel, M (1990) Cell-specific expression of the rat oxytocin gene in transgenic mice. J. Neuroendocrinol. 2, 917–925.PubMedCrossRefGoogle Scholar
  12. 12.
    Carter, D. A., Ang, H. L., and Murphy, D. (1989) Expression pattern of neuropeptide genes in transgenic mice. Soc. Neurosci. Abstr. 15, 1125.Google Scholar
  13. 13.
    Kollias, G., Spanopoulou, E., Grosveld, F., Ritter, M, Beech, J., and Morris R (1987) Differential regulation of a Thy-l gene in transgenic mice. Proc Natl Acad. Sct USA 84, 1492–1496.CrossRefGoogle Scholar
  14. 14.
    Habener, J. F., Cwikel, B. J., Hermann, H., Hammer, R. E., Palmiter, R D, and Brinster, R. L. (1989) Metallothionein-vasopressin fusion gene expression in transgenic mice. J. Biol. Chem. 264, 18844–18852.PubMedGoogle Scholar
  15. 15.
    Theill, L. E., Wiborg, O., and Vuust, J. (1987) Cell-specific expression of the human gastrin gene: Evidence for a control element located downstream of the TATA box. Mol. Cell. Biol. 7, 4329–4336.PubMedGoogle Scholar
  16. 16.
    Russo, A. F., Crenshaw III, E. B., Lira, S. A, Simmons, D. M., Swanson, L W., and Rosenfeld, M. G. (1988) Neuronal expression of chimeric genes in transgenic mice. Neuron 1, 311–320.PubMedCrossRefGoogle Scholar
  17. 17.
    Swanson, L. W., Simmons, D. M., Azzira, J., Hammer, R, and Brinster, R. (1985) Novel developmental specificity in the nervous system of transgenic animals expressing growth hormone fusion genes. Nature 317, 363–366.PubMedCrossRefGoogle Scholar
  18. 18.
    Murphy, D., Bishop, A., Rindi, G., Murphy, M. N., Stamp, G. W. H., Hanson, J., Polak, J. M., and Hogan, B. (1987) Mice transgenic for a vasopressin-SV40 hybrid oncogene develop tumors of the endocrine pancreas and the anterior pituitary. Am. J. Path. 129, 552–566.PubMedGoogle Scholar
  19. 19.
    Botteri, F. M., van der Putten, H., Wong, D. F., Sauvage, C. A., and Evans, R. M. (1987) Unexpected thymic hyperplasia in transgenic mice harboring a neuronal promoter fused with simian virus 40 large T antigen. Mol. Cell. Biol 7, 3178–5184.PubMedGoogle Scholar
  20. 21.
    Palmiter, R. D., Brinster, R. L., Hammer, R. E., Trumbauer, M. E., Rosenfeld, M. G., Birnberg, N. C., and Evans, R. M. (1982) Dramatic growth of mice that develop from eggs microinjected with metallothionine-growth hormone fusion genes. Nature 300, 611–615.PubMedCrossRefGoogle Scholar
  21. 22.
    Hammer, R. E., Brinster, R. L., Rosenfeld, M. G., Evans, R. M., and Mayo, K. E. (1985) Expression of human growth hormone-releasing factor in transgenic mice results in increased somatic growth. Nature 315, 413–416.PubMedCrossRefGoogle Scholar
  22. 23.
    Edwards, D. H., Rutter, W. J., and Hanahan, D. (1989) Directed expression of NGF to pancreatic b cells in transgenic mice leads to selective hyperinnervation of the islets. Cell 58, 161–170PubMedCrossRefGoogle Scholar
  23. 24.
    Breitman, M. L., Clapoff, S., Rossant, J., Tsui, L. C., Glode, L. M., Maxwell, I. H., and Bernstein, A. (1987) Genetic ablation: targeted expression of a toxin gene causes microphalmia in transgenic mice. Science 238, 1563–1565PubMedCrossRefGoogle Scholar
  24. 25.
    Landel, C. O., Zhao, J., Bok, D., and Evans, G. A. (1988) Lens-specific expression of recombinant ricin induces developmental defects in the eyes of transgeric mice. Genes Dev. 2, 1168–1178.PubMedCrossRefGoogle Scholar
  25. 26.
    Breitman, M. L., Rombola, H., Maxwell, I. H., Klintworth, G. K., and Bernstein, A (1990) Genetic ablation in transgenic mice with an attenuated diptheria toxin A gene. Mol. Cell. Biol. 10, 474–479.PubMedGoogle Scholar
  26. 27.
    Borrelli, E., Heyman, R. A., Arias, C., Sawchenko, P. E., and Evans, R. M. (1989) Transgenic mice with inducible dwarfism. Nature 339, 538–541.PubMedCrossRefGoogle Scholar
  27. 28.
    Bernstein, A. and Breitman, M. L. (1989) Genetic ablation in transgenic mice. Mol. Biol. Med. 4, 323–334 (in press; see ref. 1).Google Scholar
  28. 29.
    Katsuki, M., Sato, M., Kimura, M., Yokoyama, M., Kobayashi, K., and Nomura, T. (1988) Conversion of normal behavior to shiverer by myelin basic protein antisence cDNA in transgenic mice. Science 241, 593–595.PubMedCrossRefGoogle Scholar
  29. 30.
    Thomas, K. R. and Capecchi, M. R. (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346, 847–850.PubMedCrossRefGoogle Scholar
  30. 31.
    Scott, M., Foster, D, Mirenda, C., Serban, D., Coufal, F., Walchli, M., Torchia, M., Groth, D., Carlson, G., DeArmond, S. J., Westway, D., and Prusiner, S. B. (1989) Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59, 847–857.PubMedCrossRefGoogle Scholar
  31. 32.
    Prusiner, S. B., Scott, M., Foster, D., Pan, K-M., Groth, D, Mirenda, C, Torchia, M., Yang, S-L., Serban, D., Carlson, G. A., Hoppe, P. C., Westaway, D., and DeArmond, S J (1990) Transgenic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686PubMedCrossRefGoogle Scholar
  32. 33.
    Hsaio, K. K., Scott, M., Foster, D., Groth, D. F., DeArmond, S. J., and prusiner, S. B. (1990) Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science 250, 1587–1590.CrossRefGoogle Scholar
  33. 34.
    Greenberg, B.D., Ali, S. M., Altman, R. A., Lowery, D. E., Andrus, P. K., and Polites, H. G. (1990) Alzheimer-type amyloidogenesis. A transgenic mouse model? Soc. Neurosci. Abstr. 16, 128.Google Scholar
  34. 35.
    Kawabata, S., Higgins, G. A., and Gordon, J. W. (1992) Nature 356, 23.PubMedCrossRefGoogle Scholar
  35. 36.
    Kawabata, S., Higgins, G. A., and Gordon, J. W. (1991) Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein. Nature 354, 476–478.PubMedCrossRefGoogle Scholar
  36. 37.
    Kothary, R., Clapoff, S., Brown, A., Campbell, R., Peterson, A., and Rossant, J. (1988) A transgene containing lacZ inserted into the dystonis locus is expressed in neural tube. Nature 335 435–437.PubMedCrossRefGoogle Scholar
  37. 38.
    Krulewski, T. F., Neumann, P. E., and Gordon, J. W. (1989) Insertional mutation in a transgenic mouse allelic with purkinge cell degeneration. Proc. Natl Acad. Sct. USA 86, 3709–3712.CrossRefGoogle Scholar
  38. 39.
    Mellon, P. L., Windle, J. J., Goldsmith, P. C., Padula, C. A., Roberts, J. L., and Weiner, R. I. (1990) Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5, 1–10.PubMedCrossRefGoogle Scholar
  39. 40.
    Efrat, S., Teitelman, G., Anwar, M., Ruggiero, D., and Hanahan, D. (1988) Glucagon gene regulatory region directs oncoprotein expression to neurons and pancreatic α cells, Neuron 1, 605–613.PubMedCrossRefGoogle Scholar
  40. 41.
    Schwanzel-Fukuda, M. and Pfaff, D. W. (1989) Origin of luteinizing hormone releasing hormone neurons. Nature 338, 161–164.PubMedCrossRefGoogle Scholar
  41. 42.
    Lee, H. J., Hammond, D. N., Large, T. H., Roback, J. D., Sim, J. A., Brown, D. A., Otten, U. H., and Wainer, B. H. (1990) Neuronal properties and trophic activities of immortalized hippocampal cells from embryonic and young adult mice. J. Neurosci. 10, 1779–1787.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 1993

Authors and Affiliations

  • David A. Carter
    • 1
  1. 1.Neuropeptide Laboratory, Institute of Molecular and Cell BiologyNational University of SingaporeRepublic of Singapore

Personalised recommendations